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4. Abstract 

The main focus of this study is to critically assess the relevance or otherwise of a mesoscopic 

grain boundary sliding controlled flow model, which has been proposed as the common basis 

for explaining superplastic deformation in different classes of materials. The rationale behind 

this approach is that, as superplasticity is observed to be a near-ubiquitous phenomenon, there 

could be an underlying physical phenomenon responsible for this. If this were the case, the 

phenomenology of the superplastic flow process should also be similar for different classes of 

materials, i.e. there should be a universal curve for superplastic flow in all systems if the 

experimental variables like stress, strain-rate, strain-rate sensitivity and temperature of 

deformation are correctly normalized. Starting from these premises, it has been shown that under 

isothermal conditions the    log logσ ε  plots of superplastic materials of different classes and 

the variation of the strain-rate sensitivity with  log ε  for materials of different classes have 

near-identical features. The viscosity and the free energy of activation of all the alloy systems at 

(nearly) the same homologous temperature also vary quite similarly. Thus, the universality in the 

mechanical response of superplastic alloys is demonstrated. 

Further, the mesoscopic-grain boundary sliding controlled flow model for superplastic 

deformation, initially proposed for micron-grained metallic materials, but later extended to 

include dispersion strengthened alloys, intermetallics, metals with a quasi-crystalline phase, 

ceramics and ceramic-composites was taken up for consideration. An algorithm was developed 

to analyze the experimental data in terms of this model, so that many systems could be analyzed 

successfully. It has been shown that the mesoscopic-grain boundary sliding model satisfactorily 

describes superplastic deformation in metals and alloys, dispersion strengthened alloys, 
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ceramics, composites, intermetallics, nanostructured materials and a material containing a 

quasi-crystalline precipitates and of grain sizes ranging from a few micrometers to a few 

nanometers. Also, the same approach has been used to satisfactorily explain superplasticity in 

geological materials and ice. In the present state of its development, in the mesoscopic-grain 

boundary sliding controlled model, even though theoretical expressions exist, the values of 

the free energy of activation and the threshold stress needed for the onset of mesoscopic-

grain boundary sliding are treated as fitting constants. 

By way of applying the ideas to an allied, relevant situation, the mesoscopic-grain boundary 

sliding controlled model was also used to satisfactorily account for the inverse/ reverse Hall-

Petch effect observed in materials when the grain size is in the lower ranges of the nanometer 

scale. 

Future efforts could be towards a theoretical framework at a mesoscopic level, by estimating 

the threshold stress necessary for the onset of mesoscopic-grain boundary sliding a priori. 
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5. Introduction 

Preamble: Although the phenomenon of superplasticity was observed clearly as early as 

in the 1930s [1], a formal definition for superplasticity was introduced only in 1991 as: 

The ability of a polycrystalline material to exhibit, in a generally isotropic 

manner, very high tensile elongations prior to failure [2]. 

This has been shown to be a rather incomplete definition/ description in several ways [3], 

particularly because it does not contain any quantifiable measures or microstructural 

details. 

Structural superplasticity is normally considered to be the behavior exhibited by fine-

grained polycrystalline materials at low strain-rates and when the deforming temperature 

is more than half the melting temperature on an absolute scale. Superplasticity is observed 

in many classes of materials. In this thesis superplasticity in metallic alloys, ceramics, 

composites, metals with a quasi-crystalline phase, quasi-single phase metals, 

intermetallics, nanostructured materials, geological materials and ice is examined. 

Further, superplasticity has also been reported in carbon nano-tubes [4] and amorphous 

materials like bulk metallic glasses [5,6]. Therefore, it would appear that superplastiticy is 

a near-ubiquitous phenomenon, that can be observed in almost all classes of materials 

under the right experimental conditions [7]. Although Superplasticity is normally reported 

as a phenomenon observed at low strain-rates, superplastic deformation has also been 

reported at high strain-rates, at times even exceeding 1 s
-1 

[8]. It may also be noted that 

when the grain-size decreases to nano-scale, the temperature required for superplastic 

deformation will come down considerably. 

Superplasticity is broadly classified into two categories, as environmental superplasticity 

and structural superplasticity. Environmental superplasticity is observed in materials 

exhibiting anisotropy of thermal expansion or solid state phase change during a thermal 

treatment. Neutron irradiation over a prolonged period also could lead to this type of 

superplasticity [9]. When materials exhibiting a solid state phase change are cycled 

between temperatures involving such a change, while simultaneously subjecting them to a 

small stress, environmental superplasticity can be observed [10]. 
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Structural superplasticity, which is of interest to the present work, is a phenomenon that is 

observed at high-homologous temperatures. At low homologous temperatures, the stress 

is a function of both strain and strain rate (T/Tm ≤ 0.3-0.4), i.e. the flow is strongly 

influenced by strain hardening as well as strain-rate hardening. As the deforming 

temperature increases, strain-rate hardening becomes more important and strain hardening 

becomes insignificant, if microstructure were relatively stable. When the strain-rate effect 

becomes dominant and the strain hardening effects become negligible, as in superplastic 

deformation, the steady state flow stress is related to the strain-rate through Equation 5.1. 

mı Κ'İ  5.1 

 

As P=ı A and  1 dAİ
A dt

  , Equation 5.1 can be rewritten as: 

1/m (1 m)/m
dA P 1

dt K ' A


       
   

 5.2 

 

From Equation 5.2 it can be seen that when the value of the strain-rate sensitivity index 

increases, the dependence of the rate of change of cross-sectional area on the cross 

sectional area decreases. This resists necking, as a result of which extreme elongations 

can be obtained prior to failure. This is the phenomenological explanation for superplastic 

flow. As the value of m ≠ 1, superplastic flow is not linear, like Newtonian flow. It is 

often observed that the double logarithmic plot of ı versus İ  at constant temperature 

acquires a sigmoidal shape, when the experiments are performed over a sufficiently wide 

strain-rate range and hence, the strain-rate sensitivity index goes through a maximum 

with strain-rate. Figure 5.1 shows the sigmoidal curve at constant temperature. The strain-

rate regimes normally observed during superplasatic deformation are also depicted in 

Figure 5.1. Due to the sigmoidal nature of the stress versus strain-rate behavior the log (ı) 

versus log  İ  can be divided into three zones, as shown in Figure 5.1. In regions I and IIa 

the value of the strain-rate sensitivity index, m, increases with increasing strain-rate and 

reaches a peak value towards the end of region IIa. In regions IIb and III the value of m 



5 | I n t r o d u c t i o n  

 

continuously decreases. The schematic for the expected behavior of the strain-rate 

sensitivity index is shown in Figure 5.2. 

 

Figure 5.1: Sigmoidal nature of superplastic deformation 

 
Figure 5.2: Variation of the strain-rate sensitivity index with strain rate 

 

The strain-rate sensitivity index, m, is normally calculated as shown in Equation 5.3 

[3,9,11]. This value of m is then assigned to either the mean value of the two strain-rates 

or by convention, to the lower of the two strain-rates. 

1 2

1 2

log(ı / ı )
m

log(İ / İ )
  

5.3 
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Microstructural features like grain-size, shape, misorientations between grains, texture, 

dislocation density, segregation, defects etc. are all expected to influence the superplastic 

response of a material. Nevertheless, the grain-size is used as the only unique 

microstructural parameter in most of the experimental and theoretical studies [12]. Quite 

often, a generic equation of the form shown below is used to describe high-temperature 

deformation/ steady-state creep [13]. 

p n

0D Gb b ı Qİ A exp
kT d G kT

          
    

 5.4 

 

Experimental investigators of a good number of systems considered for analysis in this 

thesis have suggested models for superplastic flow mostly based on Equation 5.4. 

However, it needs to be noted that A and n are not at all constants, which also lack 

physical significance. Their values, for the same material, differ depending on the 

experimental conditions. For example, for the ten aluminum systems analyzed in this 

thesis the values of A ranged from ~10
6
 to ~10

11
 and n from 1 to 4.4. The same will be 

described in a more detailed manner in Chapter 7. Further, A and n are not independent of 

each other, but are interdependent in a unique manner, due to which they cannot be 

determined independent of each other [14]. As can be seen from Equation 5.4, the flow 

stress is normalized with respect to the shear modulus. The latter is not a good choice as a 

reference parameter when it is necessary to determine the activation energy for the rate 

controlling process (required in many, if not the most, cases), because the temperature 

dependences of stress and the shear modulus are not identical. Therefore, it will not be 

possible to separate the effect of stress from that of temperature on the activation energy 

for the rate controlling process. How to overcome this problem and the correct way of 

normalizing the stress in a constitutive equation for high temperature deformation 

(including superplastic deformation) are presented in a recent publication [15]. In 

contrast, it will be shown below that in the analysis based on the mesoscopic grain 

boundary sliding controlled flow model, there are no such ambiguities and the 

experimental results can be understood without invoking adjustable parameters. Prior to 

undertaking this exercise, a brief review of some of the other models often discussed in 

the literature on superplasticity will be considered.  
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Models used to explain superplastic deformation: Developing a comprehensive theory 

to describe real-time deformation is very difficult. Such theories can be tractable when 

they regard the material as a continuum. Introduction of sensible constitutive relations to 

describe the properties of the material will be the primary challenge. This can be achieved 

by understanding the physical properties of the material in such a way that the 

microstructure can be understood and controlled in a way that improves the properties 

[16]. Theories describing superplastic flow can broadly be divided into diffusional flow 

mechanisms, creep based models, GB deformation models and also, as experiments are 

often insufficient for isolating individual mechanisms, models involving a combination of 

flow processes.  

Diffusion Creep accommodated by GBS [13]: Experimentally it is seen that on an average 

the interior grains of superplastic alloys remain equiaxed and appear to retain their size 

and shape after extensive tensile elongations.  These observations led to a suggestion that 

superplasticity could be understood as a diffusion-accommodated process in which grains 

slide relative to each other and switch their neighbors in the course of deformation. This 

approach is based on an idea that the crystal deformation by dislocation motion in the 

vicinity of grain boundaries can be controlled by GB diffusion while deformation by 

dislocation creep in the grain interiors is controlled by lattice diffusion. Here it is assumed 

that crystal deformation in the vicinity of grain boundaries is controlled by the 

annihilation of dislocations of opposite sign that climb together from the plane of the GB. 

Further, it is also assumed that the transition from lattice diffusion controlled deformation 

at high strain-rates to GB diffusion controlled creep at low strain rates is controlled by the 

size of the sub-grains relative to the grain-size. At higher strain-rates, the sub-grain size is 

small relative to the grain-size and deformation is controlled completely by creep process 

in the grain interior.  At low strain-rates, the sub-grain size approaches the grain size, with 

the consequence that little substructure is created in the grain interiors and creep is 

controlled by GB processes.  This model for an iso-strain rate can be described as in 

Equation 5.5: 

6 6

c m

Ĳ 10Gb Ĳ Ĳ10Gb
1 1 1

G Ĳδ G GĲδ
                        

 5.5 
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where, 

0.2
3

c 1

Ȗb kTĲ
3500sGΩDG

      
   

 and 

0.25
3

1 gb gbm

Ȗb kTĲ
3.07GΩD į DG

      
   

 

It needs to be noted that even according to the authors this model is phenomenological 

and many constants, which cannot be generalized, are used in the model. 

Diffusional Flow Mechanisms [13]: Diffusion-controlled structure change (often 

involving easier migration of vacancies) could be necessary for superplastic deformation. 

The process of diffusion gains more significance in the light that additions of elements 

that enhance diffusivity have a positive effect on superplastic properties. As 

superplasticity is a high homologous temperature and quite often a low strain rate 

phenomenon, Nabarro-Herring and Coble creep equations [9] (shown below) are used to 

describe superplastic flow. 

 

1
L2

A Ωıİ D
L kT

  5.6 

2
gb3

A Ωıİ βD
L kT

  5.7 

 

A creep–based model by Weertman [17] is also sometimes used.  In this model 

deformation occurs by the glide of dislocations from sources within grains. These 

dislocations spread until they are blocked by dislocations spreading from other sources, 

forming edge dislocation dipoles. These dipoles are removed by bulk diffusion. There can 

also be dislocation pile–ups, which may then have to climb through bulk diffusion. This 

model is represented using Equation 5.8. 

 

3.5

b

ı ıΩİ αD
G kT

      
  

 5.8 
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This model and other creep–based models, yield poor fits with the experimental results. 

Ashby-Verrall’s Diffusion-Accommodated Creep Model [18]: This model is described by 

Equation 5.9 as:  

gb

L2

L

3.3WDAΩıİ D δ
kTL LD

   5.9 

 

The model suggests that the diffusive flow controls the deformation while GBS is only an 

inherently fast accommodation process, which at no stage is rate controlling. Here it has 

been pointed out that diffusional transport must occur from the centre of the grain 

boundaries toward the corners, if normal traction continuity across the boundary is to be 

maintained. This would not be true because, if grains experience a net torque, it can cause 

a loss of matter from grain corners to fill the center of grain boundaries. Several other 

limitations have also been pointed out and can be found in the published literature. Some 

more models have been suggested to explain the phenomenon of superplasticity and these 

can be found in some of the well-known expert-level books on this subject [9,19,20]. 

 

Mesoscipic grain boundary sliding controlled flow model [7,9,21–26]: Essentially, in 

this model work has to be done to overcome the grain boundary viscosity before shear 

displacements between the grains occur, which leads to large scale macroscopic 

deformation. This model assumes that the rate controlling process for superplastic 

deformation will be confined to grain/ interphase boundary regions. Further, dislocation/ 

partial dislocation emission and/ or diffusion will ensure the continuity of strain across 

grains and coherence of deformation. From experimental results [9,19,20] it is already 

known that GBS is the dominant mechanism during superplastic deformation; diffusional 

flow and dislocation activity will be present to limited extent. An additive combination of 

the strain-rates due to GBS, diffusion creep and intraganular slip  İ İ İ İ
total GBS DC IS

    

[3] cannot account for the sigmoidal ı İ  curve, normally obtained during superplastic 

deformation over a considerable range of strain rates; it has also been reported that there 

would be no independent contribution from dislocation motion to superplastic 
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deformation. It is hence suggested that the rate of superplastic deformation is a result of 

the combined operation of GBS and diffusional flow and the existence of dislocation 

activity will be in a non-rate controlling manner. Although the two rate mechanisms 

(GBS and diffusion) are interdependent, one mechanism can be assumed to be the rate 

controlling mechanism by assuming the other mechanism to be the faster process. The 

faster process will not be a part of the rate equation. The m-GBS model for superplastic 

deformation regards grain boundary sliding to be the rate controlling process. 

M-GBS model analyses GBS as a two scale process; at atomistic level, the initial relative 

displacement of a grain with respect its neighbor along their common boundary is 

considered; next, development of this GBS process to a mesoscopic scale (~ a grain size 

or more) due to the formation of a plane interface is considered. When such plane 

interfaces from simultaneously in various parts of the deforming specimen, they can 

interconnect, due to which large scale GBS is obtained and a consequence of this will be 

significant specimen elongation. 

It would be quite difficult to exactly describe the actual grain shapes in materials; for the 

sake of analysis, while tetrakaidecahedron represents the ideal shape, rhombic 

dodecahedron resembles the real grains to the closest [27] and it has been assumed to be 

the grain shape in the m-GBS model. Figure 5.3 shows both the grain shapes, along with 

the shaded regions in which the rate controlling processes are assumed to be confined. 

It is known [22] that high-angle grain boundaries are conductive to superplastic 

deformation and any low-angle grain boundaries present are transformed by deformation 

into high-angle grain boundaries during the course of superplastic flow, provided the 

sliding rates at these boundaries are adequate to match those of the fast moving 

boundaries. In fact, the investigators of one of the systems analyzed here, Ref. [28], have 

experimentally reported the near-complete transformation of low-angle grain boundaries 

into high-angle grain boundaries, in the course of superplastic deformation. 
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Figure 5.3: Schematic of rate controlling flow of grain boundaries surrounding arrays of 

essentially non-deforming (apart from what is needed for non-rate controlling 

accommodation between grains to ensure strain compatibility) grains during occurrence 

of optimal structural superplasticity. Idealized shapes are suggested to be (a) equilibrium 

(tetrakaidecahedron), and (b) real shape (rhombic dodecahedron) of grains (reproduced 

from [25]) 

 

The m-GBS approach divides the high-angle grain boundary into a number of atomic 

scale ensembles, surrounding the free volume sites present at discrete locations 

characteristic of the boundary misorientation. For mathematical development, as shown in 

Figure 5.4, the shape of the basic sliding unit is assumed to be an oblate spheroid, with a 

size of 5 atomic diameters in the boundary plane and 2.5 atomic diameters in the 

perpendicular direction, when the GB width is assumed to ~2.5 atomic diameters. 



12 | I n t r o d u c t i o n  

 

 
Figure 5.4: Shape of the basic sliding unit (reproduced from [7]) 

 

The choice of shape of an oblate spheroid is because the stress-strain field that develops 

inside an oblate spheroid when it is deformed is uniform, has already been worked out 

and from a knowledge of this stress/ strain field, important engineering properties of the 

material can be known [29]. Presence of a free volume makes the basic sliding unit 

weaker compared with the rest of the boundary. Based on bubble raft experiments and 

MD simulations, average shear strain associated with unit shear, when an ensembles 

moves from a stable/ metastable position to another is assumed to be ~0.1 [30,31]. The 

distortion and the momentary volumetric dilatation present when the ensemble goes from 

one stable/ metastable configuration to another through a saddle point constitutes the free 

energy of activation associated with the boundary sliding process. (When the deforming 

oblate spheroid and its surrounding are viewed together it is referred to as the free energy 

of activation. But when only the deforming oblate spheroid is considered, it is commonly 

known as the activation energy for the deformation process [32]. Therefore, according to 

Eshelby [29], the free energy of activation for the boundary sliding event is given by, 

 2 2
0 01 0 2 0

ΔF GVȕ Ȗ ȕ İ    5.10 

 

where, 
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1.59 pȕ 0.944
1 p







, 

2

4 (1 p)ȕ
9 (1 p)





,  (for an oblate spheroid) 

 

If the yield behavior of the superplastic solid is governed by the von Mises criterion, 

ε0 = γ0/3
0.5; ı = 30.5Ĳ. The volume of the basic sliding unit (oblate spheroid) is 

V0 = (2/3) π/W3
. The grain boundary width, W, is assumed to be ~2.5 times the atomic 

diameter (see above). 

However, the sliding events, after sliding for the length of about a grain diameter faces a 

steric hindrance like a triple junction. This hindrance will terminate the relative motion 

between the grains, limiting the GBS event. For substantial sliding to a mesoscopic scale, 

two or more grains should align and form a plane interface. Substantial elongation can be 

obtained then by the simultaneous plane interface formation in different regions of the 

sample and long range sliding along these plane interfaces, which when interconnected 

will give rise to extensive boundary sliding. The sliding event at an individual boundary 

is depicted in Figure 5.5, while its mode of spreading to the adjacent/ contiguous grains is 

shown in Figure 5.6. 

 

Figure 5.5: Description of unit shear event at a grain boundary: (a) undeformed oblate 

spheroid, (b) deformed oblate spheroid, view in elevation, (c) plan view of deformed 

spheroid, with closure failure at the two extremities indicated in (b) and (c), (d) isometric 

view (reproduced from [7]) 
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Figure 5.6: a. A 2D section of a specimen cross-section, with the black regions indicating 

the regions from which matter is to be removed to form the  plane interfaces; b. a 

schematic for the migration of one of the boundaries at a triple junction (the vertical one 

downward in this picture) during interface formation as such a step will minimize the 

overall free energy of the system (reproduced from [23]) 

 

The plane interface formation during an m-GBS event by the movement of atoms in the 

shaded regions in Fig. 5.6 requires some energy expenditure, which gives rise to a long 

range threshold stress [26]. This has been estimated in Refs. [25,26] as, 

  0.5

B

0 0.5

f

2GΓ ΔA / AĲ
α (σA)

 
  
 

 5.11 

 

As the grain shape is assumed to be rhombic dodecahedron, the area per grain that will 

participate in plane interface formation is A = (3
0.5

/4) L
2 

and the change in area produced 

by plane interface formation is and ΔA = (1/20.5
.4) L

2
. Noting that ı0 = 3

0.5Ĳ0, the rate 

equation for the model can be written as [7,23,25,26]. 
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0 0 0 0 0
2cWȖ ν (ı ı )cȖ V ΔFİ sinh exp

L 2kT kT

       
   

  5.12 

 

It is pertinent to note that in Equation 5.12 there are no adjustable constants; each 

constant is well defined and is either already known or can be calculated from the 

expressions derived. Validation of the above equations and the further development of the 

m-GBS model has been a major concern of this thesis. 
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6. Universal nature of the phenomenology of superplasticity 

Introduction: As mentioned in the Introduction, a sigmoidal curve is observed in various 

classes of superplastic materials, when the isothermal, steady state log (σ) values are 

plotted against the  log ε  values [9,19,20]. In this Chapter it is suggested that on proper 

normalization of the stress, strain-rate and the other variables, universal curves can be 

obtained for almost all materials that exhibit superplasticity. While, in principle, all 

systems for which superplastic behavior has been established could be taken up for 

investigation to either validate or reject the above hypothesis, it will be seen here that the 

normalization of the stress, strain-rate, strain-rate sensitivity index, temperature, free 

energy of activation for the rate controlling process and “absolute” viscosity of the 

superplastic medium has to be done with respect to the stress/ strain-rate, strain-rate 

sensitivity index and absolute viscosity value corresponding to the point of inflection in 

the isothermal, sigmoidal log (σ) –  log ε  plot, which is the point of maximum value in 

m/ percentage elongation etc. (if the parameters pertaining to this point are chosen as the 

base, no problem of convergence will be there in any series expansion, as all the 

normalized parameters then will have values less than unity). Evidently, the free energy 

of activation should be normalized with respect to the melting point of the superplastic 

system, as this parameter (the melting point) determines the strength of the inter-atomic 

bonds (there is a direct dependence between the two parameters). The first restriction 

(i.e., identification of the parameters at the point of inflection in the isothermal, sigmoidal 

log (σ) –  log ε )  necessitates that only systems in which the region II to region III 

transition in the sigmoidal plot is clearly defined by the reported experimental data could 

be taken up for the present study.  As a result, the experimental data pertaining to two 

Zinc alloys [33,34], two Aluminum alloys [35,36], one magnesium alloy [37] and one 

titanium alloy [38] are considered here. A good correlation coefficient in terms of a 

universal curve could be obtained for all the parameters of interest in all the systems 

investigated here. 

In the past, using limited experimental data, the concept of universality in the behavior of 

superplastic alloys was probed by our group, focusing just on the variations in the strain-

rate sensitivity index, m, in different systems [3,39]. However, in those studies even with 

respect to this parameter (m), the temperature-dependence of m was not taken into 



17 | U n i v e r s a l i t y  

 

account. Therefore, the earlier analysis is regarded here as rather limited. In this chapter, 

the universality in the behavior of superplastic alloys is studied over a wide range of 

temperatures, with respect to all the parameters mentioned above, based on experimental 

results reported in [28,35,40–42]. 

Unlike solids, which have a viscosity in the range of ~ 10
14 

Nms
-1

 and more, most 

superplastic materials possess an apparent viscosity of ~ 10
3 – 10

8 
Nms

-1
 [9]. Also, it is 

known that in the optimal region, superplastic deformation exhibits a viscoplastic 

behavior, i.e. the “apparent” viscosity decreases with increasing strain rate [9,43]. A study 

of universality in mechanical response, therefore, should also include universal “absolute” 

viscosity curves for the superplastic materials, provided the normalization steps are 

carried out properly. This proposition is established here using the experimental results 

reported in Refs. [34,44–48]. 

When a common rate controlling mechanism is suggested, as done by our group, 

regardless of the material in which superplasticity is studied, a case exists that the free 

energy of activation (as shown earlier, the same as the activation energy for the rate 

controlling process, in the popular language found in the literature [32]) obtained for all 

the materials should be similar/ comparable, when a proper normalization is done, i.e., 

with respect to (RTm) (Tm is the melting point; it is assumed, as done always in the 

classical domain that the temperature dependence to follow a Maxwell-Bolltzmann 

distribution). This idea is established using the values of the free energy of activation of 

37 superplastic systems. 

Thus, in this chapter a case for the existence of a multidimensional, universal relationship 

involving 0σ ε m η T ΔF      in a normalized hyper-space for all those superplastic 

systems, for which adequate experimental data could be found, is presented. 

 

The sigmoidal curve: Figures 6.1 and 6.2 show a sigmoidal curve and a schematic 

indicating the variation of the strain-rate sensitivity index with strain-rate. Initially, the 

strain-rate sensitivity index increases with increasing strain-rate and after reaching a peak 

value, it decreases with a further increase in strain-rate. That value of the strain-rate at 

which m is a maximum is regarded as the optimal strain-rate for superplastic flow and the 
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corresponding stress is considered as the optimal stress - Figure 6.1. Here the optimal 

stress, strain-rate (both of which correspond to the maximum in “m” value for a given 

grain size and temperature) and mmax are taken as the normalization bases. Further, the 

experimental temperature is normalized with respect to the melting temperature of the 

material (homologous temperature) and the apparent viscosity, ηapp, with respect to the 

“absolute viscosity”, ηabs, i.e., the viscosity at the stress level, σc, at which m = 1.0 in the 

normalized stress – strain-rate space [15]. Hence, the expected multidimensional 

relationship is as shown in formalism 6.1. 

 

 

Figure 6.1: Sigmoidal nature of superplastic deformation (after KAP-Davies, 1980) 

 
Figure 6.2:Variation of the strain rate sensitivity index with strain rate (after KAP-

Davies, 1980) 
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opt opt max m app absσ / σ ε / ε m / m T / T η / η     6.1 

 

Equation 6.1 is a universal curve in hyper-space of five dimensions. 

Experimental data reported in [33–38] have been considered for analysis. As already 

mentioned, these data sets represent the log (σ) versus  log ε  relationship over a range 

wide enough to include all the relevant regions of superplastic deformation. The optimal 

values of m, σ and ε  were chosen as explained above (at the point of inflection) and they 

were used as the normalization bases. Table 6.1 displays the optimal values of m, σ and ε  

at each temperature of deformation for the systems analyzed. The test temperature, T, as 

stated before, was normalized with respect to the melting point, Tm, of the material 

involved. 

 

Table 6.1: Normalizing details of the systems analyzed 

Sl. 

No. 
Composition T, K T/Tm mmax σopt, MPa optε x10

-3
, s

-1
 

1 Zn 22Al [33] 

423 0.56 

~0.5 

86.91 13.13 

473 0.62 37.0 7.20 

503 0.66 14.88 3.28 

2 Zn 22Al [34] 453 0.60 ~0.5 20.89 0.63 

3 Al 5.7Mg 0.32Sc [35] 

573 0.61 0.42 32.70 5.64 

623 0.67 0.42 60.62 142.98 

673 0.72 0.43 71.03 589.09 

723 0.77 0.49 63.20 1471.30 

4 Al 3Mg 0.2Sc [36] 

573 0.61 

~0.5 

98.39 32.09 

623 0.67 40.33 32.09 

673 0.72 29.16 32.09 

723 0.77 22.86 32.09 
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5 Mg 4Y 0.7Zr [37] 

598 0.65 

~0.5 

95.56 10.60 

623 0.67 46.89 10.60 

648 0.70 23.01 10.60 

6 Ti 6Al 4v [38] 

1023 0.53 0.45 17.783 0.78 

1123 0.58 0.51 57.54 0.63 

1173 0.61 0.52 50.12 0.50 

1198 0.62 0.51 20.89 0.56 

Compositions are in weight percent up to here 

 

The normalized experimental data for the different systems is presented in Figure 6.3. 

 

Figure 6.3: Universality in stress-strain rate-temperature relationship for superplastic 

materials 

 

The equation resulting from the plot presented in Figure 6.3 is expressed as Equation 6.2 

below. 

f(x, y) = 0.53-1.6x-1.73y+1.21x
2
+6.6xy-0.66y

2
 6.2 
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In Equation 6.2 normalized strain-rate is considered a function of homologous 

temperature and normalized stress; i.e. f(x, y) = z ~  maxlog ε / ε , x ~ T/Tm and  

y ~ log(σ/σopt). The correlation coefficient for the above fit is 0.96. 

A commonly used equation to describe high temperature deformation is: 

n 0ΔFε aσ exp
RT

   
 

  6.3 

 

For mathematical convenience, this is written here as, 

n Bε Aσ exp
T

   
 

 
6.4 

 

 

where A = a, B = (ΔF0/R). 

For explaining superplasic flow, many authors [2,19,20,49,50] have taken n ≈ 2 [19,20], 

as they assume that a value of n, the stress sensitivity (inverse of m, the strain rate 

sensitivity index), implies that the flow is dominated/ controlled by grain boundary 

sliding. A fit was attempted for all the systems presented in Table 1 using Equation 6.4 

with n = 2 and the correlation coefficient for this fit is reported in Table 6.2.  

In Chapter 7 it has been demonstrated that a micro-mechanistic model based on a physical 

idea that optimal structural superplastic flow is rate controlled by grain boundary sliding 

that develops to a mesoscopic scale (~ of the order of a grain diameter or more) is 

effective in explaining the phenomenon of optimal superplasticity using data pertaining to 

42 systems. Mathematical development of the idea has shown that this mechanism is 

represented as,  

0 0 0 0 0
2cWγ ν (σ σ )cγ V ΔFε sinh exp

L 2kT kT

       
   

 6.5 

 

For the isothermal case, this equation reduces to a form Y = A sinh (a*X). The 

temperature dependence is Maxwell-Boltzmann. A correlation coefficient, estimated by 
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considering the normalized strain-rate as a function of normalized temperature and 

normalized stress was obtained.  

On inspection, the log (σ) –  log ε  curve up to the point of inflection (the optimal range) 

appears to be quadratic. A second order regression fit was also attempted for all the data. 

The results are reported in Table 6.2. 

Table 6.2: Results of the test for universality of 

superplasticity data for different systems 

Sl 

No 
Fit type CC 

1 2
rd

 order polynomial fit* 0.96 

2 

Equation 6.3 (with n=2; 

model popularized by 

several authors) 

0.69 

3 
Equation 6.4 (m-GBS 

model) 
0.95 

Correlation coefficient presented pertains to the systems 

presented in Table 1 

*Regression analysis; no theoretical basis 

 

An examination of Table 6.2 reveals that the fit corresponding to the m-GBS model 

(Equation 6.5) is very good. The quadratic fit, presented as Serial Number 1 in Table 6.2 

is based on a regression analysis, which is devoid of any physical meaning. This 

mathematical fit is also equally good. However, this fit does not provide a physical 

insight to the phenomenon of superplasticity. In contrast, the fit in terms of Equation 6.3, 

with n = 2, very popular with many authors who claim that this is the mathematical form 

of GBS-dominated superplastic flow [2,19,20,49,50], gives a rather poor fit (CC < 0.70) 

of the experimental data. Therefore, the present analysis, in addition to establishing the 

universality of the stress – strain-rate relationship in superplastic materials, provides a 

point in favor of the m-GBS model for optimal structural superplasticity and against the 

suggestion that GBS is characterized by a physical process (or processes) that has  a value 

for m = 0.5. 

 

Viscosity: As mentioned already, the rheological response of superplastic materials is 

viscoplastic, wherein the (apparent) viscosity (the ratio of shear stress to shear strain-rate 
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under isothermal conditions) in the optimal range decreases with increasing strain-rate. A 

procedure to obtain the dimensionless isothermal stress – strain-rate relationship for a 

superplastic alloy in the optimal region has been outlined in [15]. A method for 

determining the stress, σc, at which n = 1 (Newtonian viscosity) in the normalized stress – 

strain-rate space has also been given. From the analysis presented in [15], it follows that 

steady state optimal superplastic flow in a material can be written as, 

        0
0

c

P
log log 1 P log σε σA σ

      6.6 

 

This reduces to a form, 

Y = C1 + C2log(X) – C3X 6.7 

 

where the several (experimental) values of Y (  log ε ) and X (σ) are known. Data at each 

temperature for the systems [34,44–48] were fitted using Equation 6.7. The value of C2 in 

such a fit is given by C2=1+P0; and C3=P0/σc. The value of σc, which is the stress value at 

which n = 1 in the normalized space, and the corresponding ε  values are used to 

determine the absolute viscosity, ηabs, from the relation, 
cc at σσ / ε 3η  (von Mises yield 

behavior is assumed to be present in the superplastic material). The data for different 

systems were analyzed and these are plotted in Figure 6.4. Here the homologous 

temperature range was from 0.92 to 0.50. Evidently, the data pertaining to different 

classes of materials (aluminum, copper, zinc and magnesium alloys and cobalt and 

titanium based intermetallics) exhibit similar behavior. The differences in the 

homologous temperatures for the different materials are responsible for the small scatter 

in the plots. 
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Figure 6.4: “Absolute” viscosity v/s normalized strain-rate for different materials 

 

A correlation coefficient of ~0.95 was obtained for a second order fit between the 

normalized strain-rate and normalized viscosity. If temperature was considered, the 

correlation coefficient for the third order fit will be ~0.96. The different data points shows 

that all the materials studied follow a universal curve. The scatter further decreases if the 

actual homologous temperature at which the data is generated is also taken into account; 

the 3D plot is preseented in Figure 6.5. Equations 6.8 and 6.9 present the fit obtained for 

second and third order fits respectively. 

 

Figure 6.5: Normalized viscosity v/s normalized strain-rate for different homologous 

temperatures 
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f(x) = –0.0015x
2
 + 0.15x + 0.95 6.8 

 

where, f(x) ~ η/ηopt; optx ~ ε / ε . 

f(x,y) = 8.34y
2 – 0.0014x

2 
+ 0.06xy – 12.18y + 0.11x + 5.16 6.9 

 

where, f(x,y) ~ η/ηopt; optx ~ ε / ε ; y ~ T/Tm. 

 

Strain-rate sensitivity index: As pointed out earlier, due to the sigmoidal behavior 

present in the isothermal, double logarithmic plots of stress versus strain-rate a peak value 

is observed in the strain-rate sensitivity index. Based on limited data, earlier it was shown 

that when the strain-rate sensitivity index is normalized with respect to the peak value of 

the strain-rate sensitivity index and the strain-rate is normalized with respect to the 

corresponding value of the strain-rate for mmax, a universal curve between the normalized 

strain rate sensitivity index and the strain rate is seen [3,39]. Experimental results 

reported in [28,35,40–42] were considered for the present, more detailed analysis. The 

homologous temperature ranged from 0.56 to 0.77.  The results are plotted in Figure 6.6. 
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Figure 6.6: Normalized strain-rate sensitivity index v/s normalized strain-rate for the 

systems mentioned in the inset; plotted ignoring the differences in the homologous 

temperature.   

 

From Figure 6.6 it can be seen that all the data, pertaining to different classes of materials 

fall within a narrow band. When the homologous temperature differences are considered, 

the relationship appears as in Figure 6.7. 

 

Figure 6.7: Normalized strain rate sensitivity index v/s. normalized strain-rate v/s. 

homologous temperature 
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The fit presented in Figure 6.7 is defined well by the equation below: 

f(x, y) = z = -0.56+3.82x-0.07y-1.81x
2
+0.02xy-0.08y

2 6.10 

 

where, f(x, y) = z corresponds to the normalized strain rate sensitivity index, x and y 

correspond to homologous temperature and normalized  log ε  respectively. The 

coefficient correlation value for this case is 0.80. Sizeable experimental scatter in some 

systems, experimental data from different sources and more importantly the different 

methods used to estimate the value of m by the different authors are the key factors that 

gave rise to a lower value of the correlation coefficient, which still is reasonably good.  

 

Free energy of activation: Historically, Equation 6.3 became a popular way of 

quantifying superplastic flow because the pioneers, Backofen and coworkers, saw a 

remarkable similarity between the flow of superplastics and hot polymers and molten 

glass. As Equation 6.3 was a popular equation in the polymer literature, that got 

transferred to the superplasticity literature as well (for a summary of the early work, the 

reader is referred to, for example, [9]). The limitations of this equation, as a description 

for superplastic flow, were considered in detail in [3]. The most important inadequacies 

are as follows: 

a) Even when the isothermal stress – strain-rate relationship is presented as a log – 

log plot, the relationship was not linear; so people tried to divide the full range 

into several limited ranges to attribute a separate deformation mechanism for each 

domain- evidently a highly convoluted argument/ way of representation. 

b) More importantly, in the equation (6.3) both the proportionality constant and the 

strain-rate sensitivity index, m, (or its converse, n, the stress exponent) were 

functions of the experimental variables of stress, temperature and grain size. From 

a mathematical point of view, such a description would be regarded as inelegant/ 

inadequate [3]. (The constant of proportionality is expected to be independent of 

the variables in a sound formulation). 
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In chapter 7, after analyzing the experimental data pertaining to 42 superplastic materials, 

it is shown that a flow mechanism, in which optimal superplastic flow is rate controlled 

by grain boundary sliding that develops to a mesoscopic level, accounts for the 

experimental results very accurately. It was pointed out earlier in this chapter that a 

mathematical formulation of the physical ideas based on the above description results in 

Equation 6.5. It is easy to see that that equation reduces to a simple constitutive 

(phemenological) equation for the isothermal case as Equation 6.11. 

1 0 2
P sinh( ) P     6.11 

 

As for small values of σ, as present during superplastic deformation, sinh (σ-σ0) ≈ (σ-σ0), 

Equation 6.11 may be rewritten as: 

   
1 0 2

P( ) P
 6.12 

Ever since the 1940s, when persons like Eyring, Kauzman, Mott, Nabarro and others, 

came out with the idea of that the temperature dependence of the flow stress (or 

conversely the flow rate) of a solid obeys the Maxwell-Boltzmann relationship (i.e. the 

idea of thermally activated complexes got applied to high temperature deformation and 

the reaction rate theory came into vogue), Arrhenius kinetics has been used to understand 

high temperature solid state deformation. As can be seen, the temperature dependence of 

Equation 6.5, which is the basis of Equation 6.11, is in accordance with the Maxwell-

Boltzmann relationship. This kind of temperature dependence is true of Equation 6.3 also, 

which has been used by several authors.  In other words, what is stated here is that 

Equations 6.5 and 6.11 are alternative ways of stating Equation 6.3 and that our analysis 

in this thesis has shown that they (6.5 and 6.11) describe optimal superplastic flow very 

accurately. 

Therefore, using Equation 6.5, the free energy of activation for the different systems was 

computed and normalized with respect to (RTm), where Tm is the melting point of the 

system under consideration. (This normalization is based on the well-known fact that the 

strength of a material, and hence the free energy of activation, is directly dependent on 

the melting point of the material. The systems considered (see Table 6.3)  for analysis 

were of widely differing compositions, grain sizes and test temperatures and pertained to 
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two classes, viz. metal-based systems and ceramics. The normalized (ΔF0/RTm) values for 

the different systems are presented in Figures 6.8 and 6.9. 

Table 6.3: Details of the systems considered for the analysis 

Metallic systems 

 Composition* L, μm#
 Experimental Temperature, K 

1 
Zn 22Al

 a 
[33,34] 

2.50 423, 473, 503 

2 0.90 398, 453, 518, 545 

 

3 Al 13Si 
a 
[51] 18.00 791, 811, 831 

4 Al 33Cu 0.4Zr 
a 
[52] 7.60 713, 753, 793 

5 Al 17Si 2Fe 2Mg 1Cu 1Ni 
a 
[53] 1.40 763, 783, 793, 803 

6 Al 5.76Mg 0.32Sc 0.3Mn 
a 
[28] 3.00 723, 748, 773 

7 Al 3Mg 0.2 Sc
 a 

[36] 0.20 573, 623, 673, 723 

8 Al 1Mg 0.6Si 
a 
[54] 2.50 843, 863, 883 

9 Al 6Zn 2Mg 1.4 Cu 
a 
[55] 1.75 753, 773, 793 

10 Al 5.76Mg 0.32Sc 0.3Mn 
a 
[35] 1.0-1.6 523, 573, 623, 673, 723 

11 Al 8.9Zn 2.6Mg 0.009Sc
 a 

[44] 0.68 493, 523, 563, 583, 603 

12 Al 5Mg 0.18 Mn 0.2Sc 
a 
[56] 24.00 748, 773, 793 

 

13 Mg 6Zn 0.8Zr 
a 
[8] 0.65 473, 498, 523 

14 Mg 3Zn 1.5Zr 0.5Y 
c 
[37] 5.00 648, 673, 698, 723 

15 Mg 4Y 0.7Zr 04Nd 
a 
[57] 2.00 598, 623, 648 673 

16 Mg 6.19Zn 1.1Y 0.46Zr 
a 
[58] 5.20 673, 698, 723 

17 Mg 5.8Zn 1Y 0.48Zr
 a 

[46] 15-20 673, 723, 753 

 

18 Ti 48Al 
c 
[59] 0.90 1163, 1273, 1373 
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19 Ti 46.8Al 2.2Cr 
c 
[60] 0.80 1073, 1123, 1173 

20 Ti 43Al 
c 
[48] 5.00 1273, 1323, 1373 

 

21 
Ti 6Al 4V 

a
 [38,61] 

0.68 

0.85 

1.15 

1033, 1113, 1173 

22 1.5-2.5 1073, 1123, 1173 

 

23 
Cu 2.8Al 1.8Si 0.4Co 

a 
[45] 

7.00 723, 773, 823, 873 

24 3.00 673, 723, 773, 823 

 

25 Ni 9Si 3.1V 2Mo 
a
[62] 15.00 1323, 1353, 1373 

 

26 Co 22Ti 
c
[47] 24.00 1173, 1223, 1273 

 

Ceramic systems 

27 ZrO2 3Y2O3
d
[63] 0.51 

1523, 1573, 1623, 1673, 1723 
28 ZrO2 4Y2O3

d
[63] 0.75 

29 ZrO2 3Y2O3
d
[64] 

0.50, 

0.80, 

1.10 

1723 

30 ZrO2 8Y2O3
d
[65] 0.50 1573, 1623, 1673, 1723, 1773 

31 

ZrO2[66] 

0.065-

0.072 
1273, 1323, 1373 

32 

0.065, 

0.110, 

0.140 

1723 

33 ZrO2 8Y2O3
d
[67] 1.10 1573, 1623, 1673, 1723 
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34 
Al2O3 30ZrO2 30Al16Si2O13

b 
[68,69] 

0.39 
1673, 1723, 1773 

35 0.40 

36 Al2O3 25NiAl2O4 25ZrO2
b 
[70] 1.30 1623,  1648, 1673, 1698 1723 

 

37 Si3N4 5Y2O3 2Al2O3
d 
[71] 0.068 1723, 1773, 1823, 1873 

Composition is in 
a
 weight percent, 

b 
volume percent 

c
 atomic percent 

d
 mole percent 

#
Initial grain size 

 

 

Figure 6.8: Normalized free energy of activation for metallic systems 
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Figure 6.9: Normalized free energy of activation for ceramics 

 

If the underlying physical mechanism responsible for superplastic deformation is the 

same for all materials, regardless of the class to which they belong, normalizing the free 

energy of activation for the rate controlling process with respect to (RTm) (to compensate 

for the difference in the strength of the interatomic bonds in different materials), should 

result in fairly close values for all the systems. However, this normalized value could be 

different for metallic materials and ceramics because in the former the bonds are metallic 

in nature, while in the latter the bonds are either covalent or ionic, which are stronger than 

the metallic bonds. The commonly reported minimum error in the experimental estimates 

for the free energy of activation [72] is 42 kJ.mol
-1

. The same has also been normalized 

with respect to (RTm) and an error band is associated with each of the (ΔF0) values in 

Figures 6.8 and 6.9. It can, therefore, be concluded that the normalized values of the free 

energy of activation for the different systems are comparable, definitely so long as the 

nature of the inter-atomic bonds is the same. 

Indeed it could be argued that the universality of the (ΔF0/RT) relationship seems to 

transcend the differences between the metallic materials and ceramics, if one were to take 

into account the maximum accuracy possible in the experimental measurements of the 

activation energy. Again, it has been suggested in the literature that under pressure the 
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nature of the atomic bonds in ZrO2 becomes very similar to the metallic. It is interesting 

that the values of the (ΔF0/RT) for this ceramic material is very close to the values 

obtained for the metallic materials. In contrast, the values obtained for Al2O3 and Si3N4 

ceramics, where the covalent bonding is stronger, are greater, which is in agreement with 

the ideas proposed above.    

Therefore, it is suggested that there is a case to conclude that there is universality in the 

phenomenology of superplastic deformation, i.e. the formalism 6.1, which suggests 

universality in a normalized 5 dimensional hyper-space, appears to be meaningful. This, 

in turn, justifies the quest for identifying a common rate controlling physical mechanism 

for optimal superplastic flow, which is the subject of the next chapter. 
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7. Mesoscopic-grain boundary sliding controlled flow model 

The mesoscopic-grain boundary sliding controlled flow for superplastic deformation, 

described in chapter 5, was used to interpret optimal superplastic behavior in different 

classes of materials and the findings are described in this chapter. 

A broad overview on the constitutive equations proposed in the literature for superplastic 

deformation was also presented in chapter 5. In this chapter, it is concluded after a 

detailed analysis that a constitutive equation of the form, 

1 0 2
P sinh( ) P     7.1 

 

adequately describes isothermal, steady state, optimal superplastic deformation (i.e. 

starting from the lowest strain-rate till the point of inflection in the isothermal sigmoidal 

log (σ) –  log İ  relationship) of materials of constant microstructure (defined in terms of 

an average grain size). It is to be noted that both P1 and P2 are constants, independent of σ 

and İ . This equation is a much simpler form of the constitutive equation compared with 

the commonly used nİ Kσ , in which both K and n are functions of the experimental 

variables like stress/ strain-rate, even under isothermal, constant grain-size conditions. As 

a result, even an isothermal, isostructural plot of  log İ  – log (σ) appears sigmoidal over 

a large strain-rate range (and quadratic within the optimal range of superplastic 

deformation). In contrast, Equation 7.1, with the use of the fact that sinh (x) ≈ x suggests 

that there is a linear relationship between the strain rate and an “effective” stress, (σ-σ0), 

with σ0 a physically meaningful constant – the threshold stress necessary for the onset of 

mesoscopic boundary sliding. This form of equation is well analyzed in the literature on 

Mechanics of Solids and the behavior is said to belong to a Bingham Solid. In this view, 

the mechanical response observed during steady state isothermal, iso-structural 

superplastic flow is akin to that of a Bingham Solid [3]. This has implications for the 

development of a concept of “frame of reference indifference” for superplasticity, as has 

already been done for plasticity, e.g. the von Mises yield criterion. This aspect is beyond 

the scope of the present thesis and will be considered elsewhere. 
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For this analysis, a total of 42 systems, vastly differing in composition and grain-size and 

belonging to different materials classes, were chosen. Table 7.1 presents the details of the 

systems chosen for the analysis, along with the values of the activation energy for the 

(strain) rate controlling process(es), as suggested in the original papers (wherever 

available). In these cases, a brief description of the analytical procedures used by the 

authors is also given. 

The analytical procedure used and the algorithm on which the computer program was 

written by this author for the present purpose is discussed below, in §7.1. 

 

7.1 Algorithm 

A main aim of this investigation is the validation of the m-GBS model using the large 

amounts of experimental data available in the literature. For this exercise to involve many 

systems for which one could get dependable data and also to be completed in quick time, 

a computer program had to be written. The first step in this direction is the writing down 

of an algorithm, which will outline the procedure to be followed. The algorithm begins 

with an approximate estimation of the value for the free energy of activation for the rate 

controlling process using Equation 7.2. (The equations pertaining to the m-GBS model 

are already given in Chapter 5. But, for the ease of reference they are included at relevant 

places.) 

 2 2
0 01 0 2 0

ΔF GVȕ γ ȕ İ    7.2 

 

where, 

1.59 pȕ 0.944
1 p







, 2

4 (1 p)ȕ
9 (1 p)





,  (for an oblate spheroid) 

 

The value of the unit shear strain is initially assumed to be 0.1 (based on bubble raft 

experiments and MD simulations) [30,31]. The tolerance, which quantifies the accuracy 

in the predictions, is defined as the larger ratio between (
pred exptİ / İ ) and (

expt predİ / İ ). 
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Although predictions are considered to be satisfactory if they are within an order of 

magnitude (i.e., tolerance < 10), almost all the predictions here are well within an order of 

magnitude (far below 10) and most of them are close to 1 (near exact fits). Figure 7.1 

presents the algorithm developed for the validation of the m-GBS model.  Most part of 

the algorithm is automated.  The input data of stress, strain-rate and grain size are taken 

from the experimental results and the material properties of atomic diameter, shear 

modulus and its variation with temperature are taken from the well known compilation of 

Frost and Ashby [13].  As the strain-rate equation is transcendental, it can only be solved 

numerically. Therefore, the tolerance and the number of iterations necessary for 

convergence to a solution of pre-defined accuracy are determined manually for each 

system.  In addition, the experimental points relevant to the analysis (i.e., from the lowest 

strain rate till the point of inflection in the isothermal log (σ) –  log İ  plots) were chosen 

manually for each system. 

Data Preprocessing: An important consideration prior to the analysis is the choice of the 

data for the analysis. Minimum number of temperatures (or grain-sizes), at which the 

experimental data are to be available is 3. Such a data set is essential to compute the 

values of free energy of activation for the rate controlling process confidently, because 

this parameter is assumed to be independent of temperature (Arrhenius kinetics) and 

experimental data at a minimum of 3 temperatures are needed for obtaining a dependable 

linear fit between  log İ  and 1/T. The larger the number of data points at different 

temperatures or grain-sizes, the more suitable would a system be for the analysis. As 

stated earlier, the m-GBS model is applicable from the slowest strain rate till the point of 

inflection in the isothermal    log logİ σ  curve. Data from this range only (if data 

beyond were also reported) were manually extracted. With regard to material properties, 

the melting temperature and the shear modulus are available for most of the materials 

analyzed from the relevant phase diagrams and handbooks. The dependence of the shear 

modulus on temperature was not available for many cases.  In such cases, following the 

suggestion of Frost and Ashby [13], the variation of G with respect to T for the base 

material/ principal constituent was used, as an approximation.  Experimental values of 

Poisson’s ratio were available for quite a few cases, while for the rest, the Poisson’s ratio 

was assumed to be 0.33 [73]. The atomic diameters required for the calculations were 
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taken as those of the elements that formed the largest constituent of the alloy/ material 

[74]. 

 

Figure 7.1: Flowchart describing the algorithm; equations used are presented inside the 

frame 

 

Description of the Algorithm: Figure 7.1 is a flow chart showing the manner in which the 

computations are carried out. Equations 7.2 and 7.3 constitute two essential equations of 

the analysis: Using these equations, ΔFo and σo are the two unknowns to be computed for 

different systems at each temperature.  
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0 0 0 0 0
2cWγ ν (σ σ )cγ V ΔFİ sinh exp

L 2kT kT

       
   

  7.3 

 

For achieving this goal, the following steps are followed. 

1. Initially γo is assigned a value of 0.1 [26,75], which is later refined (see below for 

details). The material is assumed to obey the von Mises yield criterion (for 

determining the relation between the shear and normal yield stresses and the 

corresponding strains/ strain rates).  

2. At each temperature, evidently, the value of σo should be less than the lowest 

value of stress applied at that temperature in the experiments where a strain rate 

has been measured (as the threshold stress has to be below this stress for flow to 

take place).  Hence, σo is assigned values from δ to σmin – δ. To ensure accurate 

calculations, δ was chosen as 0.001 and the increment at every step was also kept 

as 0.001σmin. 

3. The following substitution is made into Equation 7.3: 

0 0

1 İ
A

(σ σ )cγ VN
sinh

2kT




 

 
 

  

Therefore, at each temperature values of ΔFo corresponding to each value of σo, as 

defined in step 2, could be computed. 

4. Computed values of σo and ΔFo are used along with the experimental stress values 

at different temperatures in Equation 7.3 and the strain rates are predicted. 

5. The error is defined as the larger value between (
pred exptİ / İ ) and (

expt predİ / İ ).  The 

error in prediction for each of the σo and the corresponding ΔFo value is computed. 

6. A maximum value of error (which was less than 10 for all the systems and less 

than 5 for most of the systems) is defined for each system.  This was a manual 

process; a physical restriction associated with the choice of the permitted value for 

the error is that the threshold stress has to decrease with increasing temperature. 

7. Among these, the ΔFo value which was the closest at all the temperatures, and the 

corresponding σo values were chosen.  This ensured that the ΔFo value was nearly 

independent of temperature, as required by Arrhenius kinetics. 



39 | m - G B S  m o d e l  

 

8. The calculated value of ΔFo was substituted in Equation 7.2 and the value of γo 

was iterated to get the exact value for the given experimental results. As the ΔF0 

value varies as γ0
2
, the deviation of γ0 from the initial value of 0.1 is not likely to 

be (and was not) very large. 

9. Replacing the γo value by the refined value obtained in step 8, steps 1 to 8 were 

followed iteratively till the values of γo converged and a near stable value was 

obtained. 

To study the meaningfulness of the analysis and the accuracy of predictions, the standard 

deviation, average error and correlation coefficient were calculated by comparing the 

experimental results against the predictions of Equations 7.4. 

2 0.5

expt pred(İ İ )
SD

n 2

   
  
  

7.4 
AE = SD/n

0.5
 

  
expt pred m, expt m, pred

expt m, expt pred m, pred

İ İ nİ İ
CC

İ nİ İ nİ



 


 

 

 

It will be seen below that all the systems analyzed gave rise to excellent correlations with 

the experimental results. 

Table 7.1 classifies all the simple systems analyzed based on the principal constituent. 

The geological materials (rocks/ minerals) and ice (glacial) are grouped together. Even a 

cursory glance of the Table brings home the significant differences in the values of the 

activation energy reported in the literature for the rate controlling process even in alloys 

of similar/ very close compositions. It is not easy to explain this observation easily, 

without proposing some exotic/ esoteric effects of very minor additions. Therefore, a case 

could be made that this is evidence for a lack of robustness in the analytical procedures 

used by these authors. 

Table 7.1: Details of the systems considered for the analysis 
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 Composition* L, μm#
 

Reported values of 

T, K Q, kJ.mol
-1

 

 

1 
Zn 22Al

 a 
[33,34] 

2.50 423, 473, 503 - 

2 0.90 398, 453, 518, 545 - 

 

3 Al 13Si 
a 
[51] 18.00 791, 811, 831 132-137 

ǂ
 

4 Al 33Cu 0.4Zr 
a 
[52] 7.60 713, 753, 793 - 

5 
Al 17Si 2Fe 2Mg 1Cu 1Ni 

a 

[53] 
1.40 763, 783, 793, 803 - 

6 
Al 5.76Mg 0.32Sc 0.3Mn 

a 

[28] 
3.00 723, 748, 773 190 

7 Al 3Mg 0.2 Sc
 a 

[36] 0.20 573, 623, 673, 723 120
e
, 95

f
 

8 Al 1Mg 0.6Si 
a 
[54] 2.50 843, 863, 883 78-556

ǂ
 

9 Al 6Zn 2Mg 1.4 Cu 
a 
[55] 1.75 753, 773, 793 - 

10 
Al 5.76Mg 0.32Sc 0.3Mn 

a 

[35] 
1.0-1.6 523, 573, 623, 673, 723 - 

11 Al 8.9Zn 2.6Mg 0.009Sc
 a 

[44] 0.68 493, 523, 563, 583, 603 142 

12 Al 5Mg 0.18 Mn 0.2Sc 
a 
[56] 24.00 748, 773, 793 - 

 

13 Mg 6Zn 0.8Zr 
a 
[8] 0.65 473, 498, 523 - 

14 Mg 3Zn 1.5Zr 0.5Y 
c 
[37] 5.00 648, 673, 698, 723 108-146 

15 Mg 4Y 0.7Zr 04Nd 
a 
[57] 2.00 598, 623, 648 673 126 

16 Mg 6.19Zn 1.1Y 0.46Zr 
a 
[58] 5.20 673, 698, 723 92 

17 Mg 5.8Zn 1Y 0.48Zr
 a 

[46] 15-20 673, 723, 753 76, 213 
ǂ
 

 

18 Ti 48Al 
c 
[59] 0.90 1163, 1273, 1373 240 

19 Ti 46.8Al 2.2Cr 
c 
[60] 0.80 1073, 1123, 1173 220 
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20 Ti 43Al 
c 
[48] 5.00 1273, 1323, 1373 390 

 

21 
Ti 6Al 4V 

a
 [38,61] 

0.68 

0.85 

1.15 

1033, 1113, 1173 

150, 240 

22 1.5-2.5 1073, 1123, 1173 - 

 

23 
Cu 2.8Al 1.8Si 0.4Co 

a 
[45] 

7.00 723, 773, 823, 873 203 region I 

120 region II 24 3.00 673, 723, 773, 823 

 

25 Ni 9Si 3.1V 2Mo 
a
[62] 15.00 1323, 1353, 1373 555 

 

26 Co 22Ti 
c
[47] 24.00 1173, 1223, 1273 80 

 

27 ZrO2 3Y2O3
d
[63] 0.51 1523, 1573, 1623, 1673, 

1723 
533 

28 ZrO2 4Y2O3
d
[63] 0.75 

29 ZrO2 3Y2O3
d
[64] 

0.50, 

0.80, 

1.10 

1723 - 

30 ZrO2 8Y2O3
d
[65] 0.50 

1573, 1623, 1673, 1723, 

1773 
341, 411 

ǂ
 

31 

ZrO2[66] 

0.065-

0.072 
1273, 1323, 1373 

350 
ǂ
 

32 

0.065, 

0.110, 

0.140 

1723 

33 ZrO2 8Y2O3
d
[67] 1.10 1573, 1623, 1673, 1723 597, 683 

ǂ
 

 

34 Al2O3 30ZrO2 30Al16Si2O13
b 0.39 1673, 1723, 1773 911, 840 

ǂ
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35 [68,69] 0.40 870 

36 Al2O3 25NiAl2O4 25ZrO2
b 

[70] 1.30 
1623,  1648, 1673, 1698 

1723 
377, 368 

ǂ
 

 

37 Si3N4 5Y2O3 2Al2O3
d 
[71] 0.068 1723, 1773, 1823, 1873 

853 region I 

572 region II 

 

38 San Carlos Olivine [76] 5.40 1423, 1473, 1523 445 

39 Limestone [77] 4.20 973, 1073, 1173 210.87 

40 Anorthite-Diopside, dry 
g 

[78] 3.05 1323, 1373, 1473 571 

41 Anorthite-Diopside, wet 
g
 [78] 3.05 1273, 1323, 1373, 1473 363 

42 Fine grained ice [79] 10.00 199, 219, 220 49 

Composition is in 
a
 weight percent, 

b 
volume percent 

c
 atomic percent 

d
 mole percent  

e
 RCM is dislocation climb, 

f
 RCM is dislocation glide, 

g 
Anorthite and Diopside are 

minerals with compositions CaAl2Si2O8 and MgCaSi2O6respectively 

#
Initial grain size 

ǂ
 At the highest and the lowest experimental stress respectively 

 

The initial average grain sizes of all the 42 systems analyzed in this study are also given 

in Table 7.1. These values are used in subsequent calculations without repeating them. It 

is interesting that these grain sizes themselves are good enough to ensure a good accuracy 

of predictions. This brings home the relative stability of the grain size during optimal 

superplastic deformation in the strain range within which the stress – strain rate 

relationships are determined. A few more details are presented along with the analysis. 

 

7.2 Zinc-based alloys 

Two zinc-based alloys from Refs. [33,34] were analyzed. The details are as follows: the 

temperature range 423 K - 545 K; grain size range, 0.9 μm - 2.5 μm; maximum strain rate 
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sensitivity index, ~0.51; stress range, 12.49 MPa - 988.38 MPa; strain-rate range 

134.60x10
-6 

s
-1

 - 11.04x10
-6 

s
-1

; maximum reported elongation ~3000%. Neither of the 

investigators has reported results/ analyses regarding the RCM or activation energy. A 

relevant observation is that Ref. [34] reports a maximum strain rate sensitivity of 0.51 at a 

grain size of 0.9 μm  and 0.15 at a grain size of 145 μm  for the same Zn 22Al alloy. This 

clearly demonstrates the importance of a fine grain size for obtaining significant 

superplastic deformation. 

Results of the analysis: Table 7.2 presents the detailed results for the zinc-based systems. 

Although a constant value for the free energy of activation is expected at all temperatures, 

due to the iterative/ numerical (not exact) solutions obtained here, the value computed at 

each temperature was slightly different. However, it is noteworthy that the scatter in the 

values of the free energy of activation for each system was much less than 42 kJ.mol
-1

, 

which is the commonly reported minimum error in the experimental estimates for the free 

energy of activation [72]. Hence an average of these slightly varying values of the free 

energy of activation is reported in Table 7.2.  

Table 7.2: Details of the strain-rate predictions using the m-GBS model 

System* T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

423 

89.8 

0.0864 26.941 4.72 0.1048 0.0349 0.9996 

473 0.0915 15.809 5.03 0.0968 0.0323 0.9816 

503 0.0941 12.2619 6.31 0.0961 0.032 0.9742 

2 

398 

94.1 

0.0846 20.9728 1.55 0.0245 0.0061 0.9176 

453 0.0906 6.2012 2.27 0.0269 0.0063 0.9398 

518 0.0982 2.9179 2.35 0.0287 0.0068 0.9607 

545 0.0997 2.9165 2.82 0.0339 0.0098 0.9761 

* For composition of the respective systems, refer Table 7.3, presented below 

 

Tolerance, in this context is defined as the ratio of the predicted strain-rate to the 

experimental strain-rate or the experimental strain-rate to the predicted strain-rate, 

whichever is larger. In order of magnitude calculations, results are considered to be 

satisfactory if the error is within an order of magnitude or the maximum tolerance is less 

than 10. From Table 7.2 it can be seen that the maximum tolerance, MT, is much less 

than 10 in all the cases and in fact, in some cases, where the experimental data were 

consistent, the predictions are extremely accurate. 
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Further, the statistical parameters of the analysis (Average error, Correlation coefficient, 

and Standard deviation) reveal that very good predictions are obtained when the 

experimental data are analyzed using the m-GBS model. 

According to the m-GBS model, the threshold stress for the onset of mesoscopic 

boundary sliding, σ0, should decrease with increasing temperature and the unit shear 

strain, γ0, should increase with increasing temperature. From Table 7.2 it is seen that both 

the threshold stress and the unit shear strain are following the expected trends for both the 

systems. 

A description about the different constitutive equations available in the literature was 

presented in Chapter 5 and in this thesis a simple constitutive equation is suggested for 

optimal superplastic flow (Equation 7.1). Table 7.3 presents the results of the fitting of 

the data using a constitutive equation of the form y=Mx+c (where y İ , M ~ P1, 

x ~ sinh (σ-σ0), c ~ P2. The threshold stress, σ0, as predicted by the m-GBS system, is to 

be used in Equation 7.1. 

Good values for the correlation coefficient could be obtained by fitting the experimental 

data using Equation 7.1. Table 7.3 presents the results. Evidently, Equation 7.1 describes 

optimal superplastic deformation very adequately. 

Table 7.3: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom* 

Fitting constants CC 

P1x10
-3

 P2x10
-3

  

1 

Zn 22Al 

0.5580 120.5447 -8.739 0.98 

0.6240 188.6957 -5.799 0.97 

0.6636 282.7686 -5.5337 0.97 

2 

0.5251 57.7683 -1.0009 0.91 

0.5976 126.0347 -0.8505 0.94 

0.6834 257.5193 -1.0708 0.96 

0.7190 680.462 -1.8874 0.98 

* Homologous temperature, Thom=T/Tm; T is the experimental temperature, Tm is the 

melting temperature 

 

Experimental strain rates and the strain rates predicted using the m-GBS model are 

presented in Figures 7.2 and 7.3 for the zinc-based alloys. 
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Figure 7.2: Strain rate predictions and İ  versus sinh (σ-σ0) plot for system 1 

 
Figure 7.3: Strain rate predictions and İ  versus sinh (σ-σ0) plot for system 2  

 

 

7.3 Aluminum-based alloys 

Ten aluminum-based alloys were analyzed [28,35,36,44,51–56]. Some systems, in fact, 

exhibited high strain rate superplasticity. Relevant experimental parameters are: 

experiments were performed in a temperature range of 493 K - 883 K; in a grain size 

range of 0.2 μm - 24 μm; maximum reported values for m and elongation were ~0.7 and 

~2500%, respectively; strain-rate range 1.10x10
-6

 s
-1 

- 1.47x10
-6 

s
-1

; stress range 0.62 MPa 

- 0.95 GPa. 

Equation 7.5 represents a general form very often used to describe superplastic behavior. 

The authors of Ref. [51] have tabulated the values of the parameters of Equation 7.5 from 
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earlier investigations. The parameters vary significantly from one model to another.  

While p varies from 0 to 3, n varies from 1 to 4.4, A, however, varies from ~10
-11

 to 10
6
. 

These values are a far cry from the claim that A and n are constants. This raises some 

doubts about the physical meaning of Equation 7.5, particularly because in Regions I and 

IIa of isothermal steady state superplastic deformation (optimal range) itself the values of 

A and n vary significantly. 

       
   

np
ADGb b
=
kT GL

 7.5 

 

Ref. [51] calculates the threshold stress by extrapolating the σ versus İ  to zero İ .The 

dominant deformation mechanisms are suggested to be dislocation climb in the high 

stress region and grain boundary sliding accommodated diffusion at intermediate and low 

stress levels. Ref. [28] believes that the conversion of sub-grain boundary to true high-

angle grain boundary occurs in the early stages of deformation. Once high-angle grain 

boundaries are formed, grain boundary sliding takes over as the dominant deformation 

process. They propose a model wherein GBS is accommodated by dislocation glide 

across the grains. Dislocation glide is suggested as the RCM. The model reduces to 

Equation 7.6. (The suggestion of dislocation glide as the rate controlling process cannot 

be reconciled easily with the very high (far more than 0.3) values of m seen during 

superplastic flow, notwithstanding the claim of the authors. Also, the activation energy 

needed for dislocation glide would be far greater than what has been reported 

experimentally.) 

2

gbs.glide

1
=B 

d
 7.6 

 

Ref. [36] begins by citing the standard theories of creep (and assuming them to be 

applicable for superplasticity also) that when p = 2, n = 2 in Equation 7.5, climb of 

dislocations would be the rate controlling process and when p = 2, n = 1, glide of 

dislocations across the grains becomes the rate controlling process. Accordingly, the 

investigators evaluated the respective activation energy as the slope of 1/T versus 

σ2
/d

2
GT, (= 120kJ.mol

-1
) when dislocation climb is the rate controlling process and the 
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slope of 1/T versus 
2d T  , (= 95kJ.mol

-1
) when dislocation glide is the rate controlling 

process, at a strain rate of 1x10
-2 

s
-1

. (Evidently, the activation energy values computed 

are apparent values and do not conform to the requirements of Arrhenius kinetics, where 

log İ  is plotted against (1/T) at constant stress σ or more correctly at constant σn
 [15,80]. 

The activation energies reported by the authors correspond to activation energy at 

constant strain rate – an apparent value. Yet, speculations about the RCMs have been 

made based on these values). The values of activation energy so computed are compared 

with the values of the activation energy for grain boundary diffusion for pure aluminum 

(≈ 87kJ.mol
-1

[81]) and the activation energy for inter-diffusivity in Al-Mg solid solution 

alloys (≈ 130.5kJ.mol
-1

[82]). As the strain rate at which the activation energies were 

calculated lies in region II of the sigmoidal logσ versus log  curve and the activation 

energy for dislocation glide is close to that for conventional aluminum alloys, dislocation 

glide was suggested as the probable RCM. Ref. [54] extrapolates σ versus 
0.5  curve 

towards zero strain-rate to determine the value of the threshold stress. With such a 

calculated value for the threshold stress, activation energy is calculated as the slope of 

 0
log ( ) / E  versus 1/T, at a constant strain rate. However, it is to be noted that while 

reporting the values of activation energies, the investigators, instead of considering the 

approximate slope involving all the experimental temperatures, as is usually done, have 

reported activation energies between every two temperatures, as shown in Figure 7.4. 

  

Figure 7.4: Activation energies reported in Ref. [54] 

(As the region II of the sigmoidal curve is almost linear, same activation energy has been 

reported for second and third, third and fourth temperatures.) 
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Ref.[44] suggests Rachinger GBS as the plausible deformation mode with impurity-

controlled or interface controlled flow [50]; p = 1 and n = 3 in Equation 7.5. Furthermore, 

the paper reports the value of the Constant A in Equation 7.5 as ~ 7100 and replaces shear 

modulus in Equation 7.5 with Young’s modulus and reports another value for A, as  

~5.1x10
6
. A better fit is said to emerge when the stress is normalized with respect to the 

Young’s modulus, instead of the shear modulus. Investigators of [56] report near 

complete transformation of grain boundaries to high-angle types during the course of 

superplastic deformation. Average misorientation angle of 27.8
o
, prior to deformation, 

increased to 41.5
o
 after deformation. Apart from the shortcomings already pointed out, 

the use of Equation 7.5 – originally proposed when n is a constant independent of stress 

and temperature, the activation energy for the rate controlling process also is independent 

of stress and temperature and nearly equal to the activation energy for bulk diffusion [15] 

to obtain some phenomenological constants empirically and venturing to speculate about 

the RCMs at the level of atomistics, to say the least, should be viewed with considerable 

caution. Topological and microstructural support for the mechanisms suggested is 

completely missing.   

Results of the analysis: Table 7.4 presents the results for the aluminum-based systems 

analyzed and Table 7.5 presents the constants calculated using the constitutive equation, 

Equation 7.1 (m-GBS model). 

Table 7.4: Details of the strain-rate predictions using the m-GBS model 

System T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

791 

140.1 

0.1269 0.5574 1.58 0.0134 0.0060 0.9248 

811 0.1290 0.5127 1.59 0.0117 0.0052 0.9570 

831 0.1309 0.5125 2.06 0.0160 0.0080 0.9614 

2 

713 

147.7 

0.1268 1.4450 1.08 0.0025 0.0011 0.9955 

753 0.1302 0.6743 1.10 0.0028 0.0014 0.9971 

793 0.1324 0.4564 1.24 0.0040 0.0020 0.9975 

3 

763 

125.4 

0.1039 13.8053 3.33 0.5662 0.2831 0.9732 

783 0.1049 7.5482 4.36 0.5351 0.2675 0.9886 

793 0.1050 4.9204 4.57 0.5546 0.2773 0.9861 

803 0.1077 1.7177 7.75 0.1623 0.0726 0.8527 

4 

723 

125.1 

0.0694 4.2063 2.04 0.0591 0.0209 0.9564 

748 0.0707 3.3671 2.80 0.0703 0.0287 0.9529 

773 0.0721 2.0719 5.84 0.0664 0.0235 0.9772 

5 573 122.4 0.1058 11.2734 1.57 0.0719 0.0294 0.9843 
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623 0.1083 7.6555 2.00 0.0671 0.0300 0.9957 

673 0.1140 3.4066 2.73 0.0773 0.0316 0.9806 

723 0.1176 3.1563 3.33 0.0719 0.0322 0.9901 

6 

843 

127.0 

0.1219 6.0819 2.13 0.3745 0.1872 0.9782 

863 0.1221 1.7782 2.66 0.3909 0.1954 0.9737 

883 0.1235 0.7507 2.77 0.3942 0.1971 0.9813 

7 

753 

116.1 

0.1119 9.5650 1.98 0.4211 0.1489 0.9861 

773 0.1139 6.4640 2.19 0.3179 0.1124 0.9949 

793 0.1141 4.4559 2.73 0.3728 0.1409 0.9752 

8 

523 

105.4 

0.0602 30.5027 1.22 0.0136 0.0068 0.9897 

573 0.0616 12.936 1.50 0.0260 0.0106 0.9798 

623 0.0620 12.9328 1.60 0.1569 0.064 0.9812 

673 0.0633 9.5460 1.83 0.2591 0.0916 0.9918 

723 0.0644 9.4378 2.11 0.4201 0.1715 0.9899 

9 

493 

103.1 

0.0960 36.9828 1.36 0.0851 0.0381 0.9653 

523 0.0978 28.0178 2.23 0.0754 0.0377 0.973 

563 0.0995 13.9243 2.54 0.2098 0.0793 0.8952 

583 0.1005 10.2616 3.44 0.3078 0.1088 0.955 

603 0.1023 6.7804 3.68 0.2165 0.0818 0.8897 

10 

748 

132.0 

0.0719 23.5183 1.26 0.0257 0.0115 0.9879 

773 0.0734 15.5946 1.31 0.0247 0.0111 0.9888 

793 0.0745 11.9544 1.39 0.0221 0.0099 0.9896 

* For composition of the respective systems, refer Table 7.5, presented below 

 

Table 7.5: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom 

Fitting constants CC 

P1 x10
-3

 P2x10
-3

  

1 Al 13Si 

0.9306 321.0393 -0.0812 0.92 

0.9541 323.5111 -0.0670 0.95 

0.9776 455.094 -0.1324 0.96 

2 Al 33Cu 0.4Zr 

0.8685 14.9311 -0.0053 0.99 

0.9172 33.0183 -0.0042 0.99 

0.9659 110.241 -0.0098 0.99 

3 
Al 17Si 2F3 2Mg 1Cu 

1Ni 

0.8178 20276.6 -109.688 0.97 

0.8392 26488.94 -74.5992 0.98 

0.8499 44276.12 -93.7011 0.98 

0.8607 22753.08 -15.4228 0.85 

4 
Al 5.73Mg 0.32Sc 

0.3Mn 

0.7749 1158.476 -2.5298 0.95 

0.8017 1578.605 -3.1510 0.95 

0.8285 2747.592 -3.7136 0.97 

5 Al 3Mg 0.2 Sc 

0.6141 373.3772 -2.4323 0.98 

0.6677 1013.306 -1.7464 0.99 

0.7213 1296.519 -3.3707 0.98 
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0.7749 1686.164 -2.4494 0.99 

6 Al 1Mg 0.6Si 

0.9035 44941.49 -41.4924 0.97 

0.9250 59343.86 -50.3523 0.97 

0.9464 141708.6 -48.7770 0.98 

7 Al 6Zn 2Mg 1.4 Cu 

0.8071 31512.37 -60.0958 0.98 

0.8285 31926.2 -50.328 0.99 

0.8499 61055.68 -4.8128 0.97 

8 
Al 5.76Mg 0.32Sc 

0.3Mn 

0.5606 41.536 -0.1155 0.98 

0.6141 285.0385 -0.4754 0.97 

0.6677 3236.729 -21.7134 0.98 

0.7213 9509.483 -30.6182 0.99 

0.7749 27971.61 -112.4010 0.98 

9 
Al 8.9Zn 2.6Mg 

0.009Sc 

0.5284 201.2234 -4.4037 0.96 

0.5606 348.8728 -2.4299 0.97 

0.6034 2340.098 -33.5165 0.89 

0.6249 4816.361 -61.3977 0.95 

0.6463 5905.905 -35.6695 0.88 

10 Al 5Mg 0.18 Mn 0.2Sc 

0.8017 75.6743 -0.4645 0.98 

0.8285 93.6177 -0.4233 0.98 

0.8499 105.8661 -0.3065 0.98 

 

Predictions in Table 7.4 are well within an order of magnitude; as required by the model, 

σ0 decreases with increasing temperature and γ0 increases with increasing temperature. 

From Table 7.5 it is clear that the fitting constants for Equation 7.1 obtained lead to good 

fits – see the values of the correlation coefficients. The detailed results are plotted in 

Figures 7.5-7.14. 

 
Figure 7.5: Strain rate predictions and   versus sinh (σ-σ0) plot for system 1 
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Figure 7.6: Strain rate predictions and   versus sinh (σ-σ0) plot for system 2 

 
Figure 7.7: Strain rate predictions and   versus sinh (σ-σ0) plot for system 3 

 
Figure 7.8: Strain rate predictions and   versus sinh (σ-σ0) plot for system 4 
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Figure 7.9: Strain rate predictions and   versus sinh (σ-σ0) plot for system 5 

 
Figure 7.10: Strain rate predictions and   versus sinh (σ-σ0) plot for system 6 

 
Figure 7.11: Strain rate predictions and   versus sinh (σ-σ0) plot for system 7 
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Figure 7.12: Strain rate predictions and   versus sinh (σ-σ0) plot for system 8 

 
Figure 7.13: Strain rate predictions and   versus sinh (σ-σ0) plot for system 9 

 
Figure 7.14: Strain rate predictions and   versus sinh (σ-σ0) plot for system 10 

 

 

 



54 | m - G B S  m o d e l  

 

7.4 Magnesium based alloys 

Five magnesium-based alloys [8,37,46,57,58] were analyzed. Experiments were 

performed inthe temperature range of 473 K to 753 K; grain sizes varied from 0.65 μm to 

20 μm; strain rate from 1.99x10-6 
s

-1
 to 98.42x10

-3 
s

-1
; stress from 0.12 MPa to 164.62 

MPa;  maximum reported values of m and elongation were 0.75 and ~ 1600% 

respectively. 

To estimate the threshold stress, σ versus İ  for different values of m, ranging from 0.2 to 

1 was plotted in Ref. [37] and for the best fit (for m = 0.5), the stress was extrapolated 

towards zero strain rate in the σ versus İ  plot and the corresponding stress was reported 

as the threshold stress. In Equation 7.5, σ was replaced by (σ-σ0) and the activation 

energy was calculated based on a constitutive equation wherein n = 2 and p = 3, as the 

slope of 3(T / G)(d / b)  versus 1/T and GBS, accommodated by slip controlled grain 

boundary diffusion, was suggested as the RCM. Refs.[45, 57] have suggested Equation 

7.7 as the most appropriate and report an activation energy, which is calculated as 

Q nR 1 T(ln ( / )      at constant strain rate. Dislocation creep controlled by atom 

diffusion accommodated by GBS was suggested as the RCM in the regions with lower 

values of m or the region I of superplastic deformation and grain mantle creep 

accommodated by GBS was suggested in the region of higher values of m or the region II 

of the sigmoidal σ - İ  curve. 

n

p

Q
=A exp
d RT

    
 

 7.7 

 

Ref. [58] uses Equation 7.5 to describe the results, but with σ replaced by (σ- σ0). As the 

experimental data led to a strain rate sensitivity index of ~ 0.5, σ0 was assumed to be zero. 

Grain boundary diffusion accommodated by GBS is suggested to be the RCM. As in the 

previous cases, a macro-analysis based on Equation 7.5 or its mild variations is all that is 

attempted. No topological or microstructural aspects are examined. There is no attempt to 

develop the physical mechanisms suggested as responsible for superplastic flow in detail.  
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Results of the analysis: Table 7.6 presents the results for the magnesium-based systems 

analyzed. Table 7.7 presents the constants obtained by fitting the data using Equation 7.1. 

Table 7.6: Details of the strain-rate predictions using the m-GBS model 

System T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

473 

97.3 

0.0998 11.5375 3.87 0.1494 0.0668 0.9814 

498 0.1017 8.6547 3.95 0.1484 0.0664 0.9918 

523 0.1033 6.2717 5.83 0.1470 0.0658 0.9954 

2 

648 

136.6 

0.1238 0.4214 2.76 0.0155 0.0049 0.9354 

673 0.1264 0.259 2.50 0.0148 0.0047 0.9539 

698 0.1290 0.1674 2.50 0.0146 0.0046 0.9651 

723 0.1316 0.1046 2.15 0.0140 0.0044 0.9779 

3 

598 

127.9 

0.1158 7.3297 2.51 0.0577 0.0288 0.9794 

623 0.1280 3.9517 2.68 0.0572 0.0286 0.9896 

648 0.1465 2.0291 3.28 0.0590 0.0295 0.9792 

673 0.1732 1.8242 3.29 0.0552 0.0276 0.9926 

4 

673 

123.6 

0.1199 1.8093 1.23 0.0425 0.0212 0.9883 

698 0.1220 1.1424 1.44 0.0436 0.0218 0.9928 

723 0.1241 1.2133 1.46 0.0328 0.0164 0.9969 

5 

673 

123.2 

0.1000 6.7738 1.40 0.0538 0.024 0.9387 

723 0.1104 2.5488 2.02 0.0502 0.0224 0.9549 

753 0.1179 0.8912 2.18 0.0319 0.0159 0.9816 

 

From Table 7.6 it can be seen that very good agreement between the experimental data 

and the predictions are obtained when the data are interpreted using the m-GBS model. 

Both σ0 and γ0 follow the expected trends in case of all the systems with varying 

temperatures; the values of ΔF0 are also nearly the same at the different temperatures. 

Coefficient of correlation values reported in Table 7.7 demonstrate the aptness of 

Equation 7.1 in describing optimal superplastic flow in Mg-based alloys. 

Table 7.7: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom 

Fitting constants CC 

P1x10
-3

 P2x10
-3

  

1 Mg 6Zn 0.8Zr 

0.5119 647.2147 -6.0762 0.97 

0.5390 1239.21 -4.7169 0.99 

0.5660 2538.932 -3.944 0.99 

2 Mg 3Zn 1.5Zr 0.5Y 

0.7013 76.6857 -0.1587 0.93 

0.7284 101.8057 -0.1329 0.95 

0.7554 143.498 -0.1217 0.96 

0.7825 182.9761 -0.1023 0.97 
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3 Mg 4Y 0.7Zr 04Nd 

0.6472 124.2364 -853.822 0.97 

0.6742 259.6659 -812.64 0.98 

0.7013 529.9517 -972.597 0.97 

0.7284 625.8909 -642.44 0.99 

4 Mg 6.19Zn 1.1Y 0.46Zr 

0.7284 678.7522 -894.834 0.98 

0.7554 1055.005 -897.9 0.99 

0.7825 1330.782 -451.708 0.99 

5 Mg 5.8Zn 1Y 0.48Zr 

0.7284 397.1439 -1642.76 0.93 

0.7825 532.4265 -1376.18 0.95 

0.8149 331.5208 -441.055 0.98 

 

Results of this analysis are presented in Figures 7.15-7.19. 

 
Figure 7.15: Strain rate predictions and   versus sinh(σ-σ0) plot for system 1 

 
Figure 7.16: Strain rate predictions and   versus sinh(σ-σ0) plot for system 2 
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Figure 7.17: Strain rate predictions and   versus sinh(σ-σ0) plot for system 3 

 
Figure 7.18: Strain rate predictions and   versus sinh(σ-σ0) plot for system 4 

 
Figure 7.19: Strain rate predictions and   versus sinh(σ-σ0) plot for system 5 
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7.5 Titanium-Aluminum intermetallics 

Three Ti-Al intermetallics [48,59,60] were analyzed. The experimental ranges are: 

Temperature range: 1073 K to 1373 K; grain size range 0.9 μm to 5 μm; reported values 

of activation energy, 240 kJ.mol
-1

 to 390 kJ.mol
-1

; stress was in the range of 5.98 MPa to 

336.72 MPa; strain rate in the range of 9.33x10
-6 

s
-1

 to 5.1x10
-3 

s
-1

; m ~ 0.6; maximum 

reported elongation was ~ 533%. 

Refs. [48,59] also report an analysis based on Equation 7.5 [58, 78]. Activation energy 

was calculated from the slope of a plot of strain rate versus the inverse of the temperature 

Q Rdln(İ d(1/ T)    . (This would be correct in a range within which m does not vary 

with stress/ strain-rate.) Lattice diffusion was suggested as the RCM. Based on the values 

of the strain-rate sensitivity index and the activation energy, GBS was suggested as the 

RCM at low strain-rates and dislocation creep glide at higher strain rates. Here also the 

discussions are qualitative and the drawbacks pointed out with regard to the analyses for 

the other systems (please see above) apply in this case also. 

Results of the analysis: Table 7.8 presents the results for the Ti-Al systems. Table 7.9 

presents the constants for the Ti-Al systems in terms of Equation 7.1. 

Table 7.8: Details of the strain-rate predictions using the m-GBS model 

System T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

1163 

285.1 

0.1222 17.2108 1.03 0.0017 0.0008 0.999 

1273 0.1312 6.75030 1.13 0.0125 0.0063 0.9938 

1373 0.1409 3.72510 1.17 0.0195 0.0098 0.9969 

2 

1073 

270.0 

0.1131 39.6285 1.45 0.0109 0.0049 0.9124 

1123 0.1179 17.2646 2.03 0.0110 0.0049 0.9245 

1173 0.1222 9.49290 2.06 0.0096 0.0043 0.9605 

3 

1273 

286.7 

0.1305 20.8433 1.55 0.0092 0.0029 0.9748 

1323 0.1353 9.78730 1.63 0.0100 0.0033 0.9850 

1373 0.1413 5.29170 1.86 0.0115 0.0035 0.9797 

 

Table 7.9: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom 

Fitting constants CC 

P1x10
-3

 P2x10
-3

  

1 Ti 48Al 
0.7503 1.4726 -3.4747 0.99 

0.8213 13.596 -63.6492 0.99 
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0.8858 69.2243 -147.774 0.99 

2 Ti 46.8Al 2.2Cr 

0.6923 1.7501 -88.7115 0.9 

0.7245 2.7759 -91.2615 0.92 

0.7568 3.8154 -49.5168 0.95 

3 Ti 43Al 

0.8213 4.1669 -66.2571 0.97 

0.8535 9.2534 -68.6535 0.98 

0.8858 16.486 -103.591 0.97 

 

 
Figure 7.20: Strain rate predictions and   versus sinh(σ-σ0) plot for system 1 

 
Figure 7.21: Strain rate predictions and   versus sinh(σ-σ0) plot for system 2 
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Figure 7.22: Strain rate predictions and   versus sinh(σ-σ0) plot for system 3 

 

From Table 7.8 it is seen that m-GBS model leads to very satisfactory predictions. 

Parameters like the free energy of activation, the threshold stress for the onset of 

mesoscopic boundary sliding, σ0, and the unit shear strain, γ0, also follow the expected 

trends (σ0 decreases with increasing temperature, while γ0 increases). Table 7.9 amply 

reveals the satisfactory nature of the constitutive equation, Equation7.1. The detailed 

results are plotted in Figures 7.20-7.22, wherein the experimental results are compared 

with the predictions. Evidently the fits are good. 

 

7.6. Titanium-based alloys 

Superplastic deformation of two titanium alloys [38,61] is analyzed here. The 

experimental parameters were: stress 5.8 MPa to 51 MPa; strain rate 14.59x10
-6 

s
-1

 to 

0.47x10
-3

 s
-1

; grain size 0.68 μm to 2.5 μm; temperature 1033 K to 1173 K; reported 

values of the activation energy are 150 kJ.mol
-1

 to 240 kJ.mol
-1

. 

Ref. [61] has used Equation 7.5 to describe the superplastic deformation. Dislocation 

motion accommodated by GBS is suggested to be the RCM. 

From Table 7.10 it can be seen that good predictions could be made using the m-GBS 

model. Consistent with Arrhenius kinetics, the values of the free energy of activation are 

close, the threshold stress for the onset of mesoscopic boundary sliding and the unit shear 

strain follow the expected trends when the deformation temperature is changed. 
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Table 7.10: Details of the strain-rate predictions using the m-GBS model 

System T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

1033 

235.9 

0.1369 4.2705 1.14 0.01 0.0045 0.9958 

1113 0.1454 4.264 1.29 0.0167 0.0083 0.9885 

1173 0.1524 3.9208 2.22 0.0277 0.0139 0.9681 

2 

1073 

246.0 

0.1430 8.6999 1.11 0.0082 0.0041 0.9915 

1123 0.1496 7.8124 1.23 0.0058 0.0029 0.997 

1173 0.1555 6.8838 1.31 0.0069 0.0035 0.9965 

 

From Table 7.11, it can be seen that good fits could be obtained using the Constitutive 

Equation 7.1, which is the mathematical form of the m-GBS model. 

 

Table 7.11: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom 

Fitting constants CC 

P1x10
-3

 P2x10
-3

  

41 

Ti 6Al 4V 

0.5344 23.4495 -60.7849 0.99 

0.5758 55.3287 92.017 0.98 

0.6068 156.3973 -350.068 0.96 

42 

0.5551 11.413 -29.5702 0.99 

0.581 15.8752 -12.4784 0.99 

0.6068 26.6418 -19.6275 0.99 

 

 

The detailed results are plotted in Figures 7.23 and 7.24. 

 
Figure 7.23: Strain rate predictions and   versus sinh(σ-σ0) plot for system 1 
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Figure 7.24: Strain rate predictions and   versus sinh(σ-σ0) plot for system 2 

 

 

7.7 Quasi-single phase copper alloy 

The experimental parameters for the copper-based alloys studied in [45] are: the 

maximum strain rate sensitivity index was ~0.35; stress was between 8 MPa and 128 

MPa; strain rate between 3.16x10
-6 

s
-1

 and 7.55x10
-3 

s
-1

; temperature range was between 

673 K and 873 K; grain size between 3 μm and 7 μm. Experiments for superplastic 

deformation are normally performed in the tensile mode. However, Ref. [45] has 

superimposed for a given material data from the tensile mode on those from the double 

shear mode and has reported good agreement. The activation energy was calculated using 

Equation 7.8. 

n 1

d, İ

δ(ln γG T)
Q R

δ(1/ T)

 
   

 
 

7.8 

 

The value of activation energy was calculated as ~ 120 kJ.mol
-1

. Lattice self-diffusion 

was suggested to be the RCM. As these authors also used Equation 7.5, the same 

criticisms applicable to the earlier cases apply here also.   

Results of the present analysis: Table 7.12 presents the results for both the quasi-single 

phase copper alloys analyzed. 
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Table 7.12: Details of the strain-rate predictions using the m-GBS model 

System T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

723 

168.3 

0.0996 27.5906 1.17 0.0021 0.0011 0.9785 

773 0.1016 15.936 1.42 0.0037 0.0017 0.956 

823 0.1033 10.1771 1.54 0.0049 0.002 0.9705 

873 0.1046 7.5319 2.45 0.0114 0.004 0.9444 

2 

673 

153.2 

0.0955 26.4044 1.93 0.0072 0.0029 0.9744 

723 0.0961 17.6492 4.77 0.0212 0.0067 0.9421 

773 0.0979 13.336 6.80 0.0304 0.0092 0.9417 

823 0.1004 9.4851 8.58 0.0314 0.0095 0.9288 

 

Table 7.13: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom 

Fitting constants CC 

P1x10
-3

 P2x10
-3

  

1 

Cu 2.8Al 1.8Si 0.4Co 

0.5332 0.7936 -2.1459 0.97 

0.5701 2.093 -8.5713 0.95 

0.6069 5.3854 -17.2568 0.97 

0.6438 19.8802 -100.093 0.94 

2 

0.4963 3.5944 -26.5183 0.97 

0.5332 26.0883 -335.492 0.94 

0.5701 67.1942 -720.882 0.94 

0.6069 107.2735 -875.233 0.92 

 

Table 7.12 reveals that the m-GBS model results in good predictions. The free energy of 

activation, threshold stress for the onset of mesoscopic boundary sliding and the unit 

shear strain follow the expected trends with changes in temperature. Table 7.13 presents 

the constants calculated for Equation 7.1. Good correlation coefficient values have been 

obtained. The near-identical stress-strain rate relationship obtained in tension as well as in 

double shear demonstrates that superplastic flow is approximately isotropic (establishes 

the validity of the von Mises criterion). The results for the quasi-single phase copper 

alloys are plotted in detail in Figures 7.25-7.26. 
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Figure 7.25: strain rate predictions and   versus sinh(σ-σ0) plot for system 1 

 
Figure 7.26: strain rate predictions and   versus sinh(σ-σ0) plot for system 2 

 

 

7.8. Nickel-based intermetallic 

One Ni3Si intermetallic system [62] was analyzed. The experimental parameters were: 

grain size ~ 15 μm, temperature range 1323 K to 1373 K, reported value of activation 

energy was 555 kJ.mol
-1

; strain rate varied from 36.99x10
-6 

s
-1

 to 1x10
-3 

s
-1

; stress varied 

from 2.07 MPa to 45.36 MPa; strain rate sensitivity ~ 0.5; maximum reported elongation 

~650%; the activation energy was calculated from the slope of a plot of log İ  versus 1/T. 

Equation 7.7 (iso-structural form of Equation 7.5) was used to describe superplastic 

deformation. It is suggested that the RCM at higher temperatures and lower strain rates 

changes from GBS to a diffusion mechanism, e.g. Coble or Nabarro-Herring creep and 

the change is attributed to accommodation of slip by gliding. Once again the analysis is 
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based on Equation 7.5/ 7.7, the discussion is qualitative and the same criticisms as in the 

earlier cases apply. 

Results of the present analysis: Table 7.14 presents the results for the nickel-based system 

analyzed. 

Table 7.14: Details of the strain-rate predictions using the m-GBS model 

System T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

1323 

223.8 

0.1482 12.3609 1.19 0.0463 0.0267 0.9669 

1353 0.1499 7.5828 1.35 0.1192 0.0688 0.9816 

1373 0.1532 0.8330 1.42 0.0647 0.0323 0.9721 

 

Table 7.15: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom 

Fitting constants CC 

P1x10
-3

 P2x10
-3

  

1 Ni 9Si 3.1V 2Mo 

0.8818 320.8015 -577.796 0.96 

0.9018 1058.392 -4339.07 0.98 

0.9151 1025.573 -2271.22 0.97 

 

From Table 7.14 it is seen that that good predictions are obtained using the m-GBS 

model. As expected, the threshold stress for the onset of mesoscopic boundary sliding 

decreases with increasing temperature and the unit shear strain increases with increasing 

temperature. Good fitting constants for Equation 7.1 have also been obtained. The results 

are plotted in detail in Figure 7.27. 

 
Figure 7.27: Strain rate predictions and   versus sinh(σ-σ0) plot for system 1 
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7.9. Cobalt-based intermetallic 

Experimental parameters for the cobalt-based intermetallic system studied here [47] were: 

grain size 24 μm, temperature was in the range of 1173 K to 1273 K, the activation 

energy in region II of superplastic deformation was estimated as 80 kJ.mol
-1

; maximum 

elongation was ~ 350%. Also in the same system, but when the grain size was reduced to 

10 μm, the maximum elongation increased to ~ 550%; strain rate ranged from 32x10
-6 

s
-1

 

to 1.6x10
-3 

s
-1

; stress ranged from 34.59 MPa to 2.93 MPa; the strain rate sensitivity was 

~0.6; the constitutive equation suggested to describe the flow was similar to Equation 7.7/ 

7.5. In region II, relevant to the current study, n was calculated to be 1.7. The reported 

activation energy was calculated using an Arrhenius plot; dynamic recrystallization and 

GBS are suggested to be responsible for deformation in higher and lower strain rate 

regions respectively. Again, the discussions are qualitative. 

Results of the present analysis: Table 7.16 presents the results for superplastic 

deformation in the cobalt-based intermetallic in terms of the m-GBS model. 

Table 7.16: Details of the strain-rate predictions using the m-GBS model 

System T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

1173 

224.8 

0.1288 5.7373 1.76 0.014 0.0063 0.9507 

1223 0.134 2.6424 1.83 0.0161 0.0066 0.9486 

1273 0.1397 2.0119 1.89 0.018 0.0081 0.9484 

 

Table 7.17: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom 

Fitting constants CC 

P1x10
-3

 P2x10
-3

  

1 Co 22Ti 

0.8925 28.6802 -147.522 0.95 

0.9305 53.1694 -210.838 0.94 

0.9686 96.1300 -257.923 0.94 
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Figure 7.28: Strain rate predictions and   versus sinh(σ-σ0) plot for system 1 

 

From Tables 7.16- 7.17 it can be seen that that good predictions have been obtained using 

the m-GBS model. The threshold stress for the onset of mesoscopic boundary sliding 

decreases with increasing temperature and the unit shear strain increases with increasing 

temperature. Good fitting constants for Equation 7.1 have also been obtained. The results 

are plotted in detail in Figure 7.28. 

 

7.10 Zirconia-based ceramics 

Seven Zirconia-based systems [63–67] were analyzed. Deformation data for a constant 

temperature, but varying grain size are also available. Reported values of strain rate 

sensitivity index is ~ 0.5; activation energy values reported ranged from 343 kJ.mol
-1

 to 

~683 kJ.mol
-1

; strain rates ranged between 1.9x10
-6 

s
-1 

and 1.1x10
-3 

s
-1

; stress ranged 

between 2.62 MPa and 757.64 MPa; experiments were performed in a temperature range 

of 1323 K to 1723 K; grain size ranged between 65 nm and 1.10 μm. 

Ref. [63] has proposed a model in which both diffusion and interface reaction act 

sequentially. GBS is suggested to be the accommodating mechanism and at lower grain 

sizes, where superplasticity is observed, interface reaction is considered to be the RCM. 

Further, the investigators have proposed Equation 7.9 and suggest that it fits the 

experimental results fairly well. 
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D i

1 1 1

İ İ İ
   ; where 

2

D

1 Aσ
İ d

  and 
2

i

1 Bσ
İ d
  7.9 

 

Equation 7.9 is typical of summation of parallel processes. But, the model [63] assumes 

sequential operation. A contradiction is present here. Ref. [64] conjectures the formation 

of amorphous phases at triple points to release the stress concentration caused by GBS 

and facilitate superplastic deformation. The paper contains the results for the deformation 

of pure zirconia and zirconia in which impurities are present. A higher strain- rate 

sensitivity index results when impurities are present. When the weight percentage of 

alumina drops from 0.065% to 0.005%, m drops from 0.5 to 0.3. Higher percentage of 

alumina is said to lead to the presence of an amorphous phase at grain boundaries. Hence, 

increased impurities facilitate superplastic deformation (possibly by lowering the melting 

point of the material). Diffusion is suggested to be the RCM by both Refs. [64,65] and 

Equation 7.7 is chosen to explain the deformation behavior. Ref. [66] uses Equation 7.5 

instead. (As already pointed out, both are similar equations.) The investigators report a 

behavior similar to that of the Zn-22Al alloy. Grain boundary diffusion is suggested as 

the rate-limiting mechanism. Both the values of n and p in Equation 7.5 are taken as 2.5. 

Ref. [67] also assumes the dependence of strain rate as shown in Equation 7.7. The value 

for p, calculated as the slope of the line obtained by plotting log İ  versus log d, is 

reported as 2.2. The stress exponent, n, calculated as the slope of the line obtained by 

plotting log İ  versus log σ, is deduced as ~0.5. Arrhenius plot of log İ  versus 1/T was 

used to calculate the activation energy. Finally, Ref. [67] concludes that at both low and 

high stresses diffusion accommodates flow. At low stresses, it is said to accommodate 

interfacial reaction and at high stresses, GBS. 

Results of the present analysis: Table 7.18 presents the results for the zirconia-based 

ceramics analyzed in this study. Apart from system 2, where the threshold stress does not 

follow the expected trend at one temperature, for the remaining systems, the threshold 

stress for the onset of mesoscopic boundary sliding and the unit shear strain follow the 

expected trends when there is a temperature change. Likewise, consistent with the 

theoretical requirement, σ0 increases with decreasing grain size. The values of the free 
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energy of activation are very close to each other in all the cases, which is good evidence 

for the robustness of the analysis. 

Table 7.19 presents constants of superplastic flow, as described by the constitutive 

equation, Equation 7. 1. Good correlation coefficient is observed in all cases. 

Table 7.18: Details of the strain-rate predictions using the m-GBS model 

System T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

1523 

379.4 

0.0959 12.9094 1.30 0.0022 0.0008 0.9859 

1573 0.0964 12.9027 1.32 0.0044 0.0017 0.9871 

1623 0.0981 8.2414 1.33 0.0065 0.0027 0.9908 

1673 0.0991 7.9680 1.39 0.0098 0.0040 0.9914 

1723 0.1023 2.4011 2.09 0.0106 0.0035 0.9675 

2 

1523 

385.4 

0.0967 3.4499 1.85 0.0022 0.0007 0.9857 

1573 0.0976 3.4480 2.13 0.0045 0.0013 0.9863 

1623 0.0990 2.1949 2.20 0.0060 0.0018 0.9861 

1673 0.1002 2.1938 2.36 0.0109 0.0033 0.9586 

1723 0.1021 2.2541 2.44 0.0094 0.0031 0.9752 

3 

1723 

373.1 

0.0992 6.8651 1.45 0.0357 0.0126 0.9617 

1723 0.0995 6.8638 2.25 0.0339 0.0169 0.9994 

1723 0.1013 6.8611 2.38 0.0113 0.0051 0.9828 

4 

1573 

372.8 

0.0963 6.4000 1.21 0.0029 0.0010 0.9986 

1623 0.0973 6.2600 1.46 0.0042 0.0015 0.9921 

1673 0.0987 6.2500 1.47 0.0059 0.0021 0.995 

1723 0.1000 6.2400 1.48 0.0098 0.0035 0.9942 

1773 0.1013 3.1600 1.65 0.0257 0.0091 0.9863 

5 

1273 

342.9 

0.0795 103.1361 1.78 0.0135 0.0060 0.9814 

1323 0.0814 59.9498 1.90 0.0144 0.0065 0.9744 

1373 0.0830 46.1385 2.18 0.0132 0.0059 0.9765 

6 

1323 

344.7 

0.0802 71.4000 1.64 0.0162 0.0072 0.9755 

1323 0.0820 71.3789 2.01 0.0087 0.0043 0.9882 

1323 0.0823 71.3743 4.13 0.0090 0.0045 0.9745 

7 

1573 

364.0 

0.0961 7.1985 1.38 0.0034 0.0014 0.9258 

1623 0.0968 5.2334 1.45 0.0058 0.0024 0.964 

1673 0.0971 3.3787 1.48 0.0105 0.0043 0.9678 

1723 0.0976 3.0077 1.50 0.0266 0.0109 0.9231 

 

Table 7.19: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom 

Fitting constants CC 

P1x10
-3

 P2x10
-3

  

1 ZrO2 3Y2O3 
0.5097 0.9594 -0.0039 0.98 

0.5264 3.8492 -0.0165 0.98 
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0.5432 8.0142 -0.0285 0.99 

0.5599 21.0356 -0.0684 0.99 

0.5766 24.3316 -0.0884 0.96 

2 ZrO2 4Y2O3 

0.5097 0.5229 -0.0028 0.98 

0.5264 1.7767 -0.0135 0.98 

0.5432 4.4666 -0.0216 0.98 

0.5599 12.5954 -0.0839 0.95 

0.5766 17.4807 -0.0661 0.97 

3 ZrO2 3Y2O3 

0.5766 129.2258 -0.847 0.96 

0.5766 50.9903 -0.143 0.99 

0.5766 15.4222 -0.098 0.98 

4 ZrO2 8Y2O3 

0.5264 2.8212 4.5305 0.99 

0.5432 8.9724 -4.3583 0.99 

0.5599 18.8543 -1.4103 0.99 

0.5766 48.5755 -87.4941 0.99 

0.5934 142.4123 -926.354 0.98 

5 

ZrO2 

0.4260 1.4703 -0.1037 0.97 

0.4428 2.6235 -0.1249 0.97 

0.4595 3.8369 -0.0981 0.97 

6 

0.4428 2.6103 -0.0940 0.97 

0.4428 0.8178 -0.0427 0.98 

0.4428 0.5966 -0.0578 0.97 

7 ZrO2 8Y2O3 

0.5264 2.3864 -9.4079 0.92 

0.5432 7.8049 -33.8547 0.96 

0.5599 24.2874 -139.869 0.96 

0.5766 128.5281 -751.202 0.92 

 

The obtained results are plotted in Figures 7.29 to 7.35. 

 
Figure 7.29: Strain rate predictions and   versus sinh(σ-σ0) plot for system 1 
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Figure 7.30: Strain rate predictions and   versus sinh(σ-σ0) plot for system 2 

 
Figure 7.31: Strain rate predictions and   versus sinh(σ-σ0) plot for system 3 

 
Figure 7.32: Strain rate predictions and   versus sinh(σ-σ0) plot for system 4 
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Figure 7.33: Strain rate predictions and   versus sinh(σ-σ0) plot for system 5 

 
Figure 7.34: Strain rate predictions and   versus sinh(σ-σ0) plot for system 6 

 
Figure 7.35: Strain rate predictions and   versus sinh(σ-σ0) plot for system 7 
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7.11 Alumina-based ceramics 

Three Alumina-based ceramics [68–70] were analyzed. Experimental parameters were: 

grain size varied from 0.39 μm to 1.30 μm; temperature from 1623 K to 1773 K; strain 

rate from 3.63x10
-6 

s
-1

 to 9.27x10
-3 

s
-1

; stress from 5.00 MPa to 50.00 MPa; maximum m 

was ~0.7.  

Refs. [65, 66] suggests a model for superplastic flow which gives rise to an equation 

similar to Equation 7.7. However in Ref. [69] a threshold stress is introduced and the 

stress term in Equation 7.7 becomes (σ-σ0). Dislocation motion accommodated by GBS is 

suggested to be the RCM. Also, the reported activation energy is calculated as the slope 

of a plot of log (σ/G) versus 1/T (not in line with conventional Arrhenius kinetics where 

log İ  is plotted against (1/T); also, the temperature dependences of σ and G are not 

identical and so both x and y axes will be functions of T, which makes the plot devoid of 

physical significance). The deformation behavior is suggested to be similar to that of Zn-

22%Al alloys. Ref. [70] proposes interface reaction controlled, diffusion accommodated 

GBS as the dominant deformation mechanism. In these cases also, Equation 7.5 is used to 

describe the deformation with the value of p as between 1 and 3; n ~1.7. As the basis of 

the analysis in these cases also is Equation 7.5, the same problems listed in the earlier 

cases would be applicable here as well. 

Results of the present analysis: Table 7.20 presents the detailed results for the three 

alumina-based systems analyzed using the m-GBS model. It can be seen that the 

threshold stress for the onset of mesoscopic boundary sliding and the unit shear strain 

follow the expected trends with temperature variations and the values of the free energy 

of activation for the three alumina-based systems are fairly close, which is evidence for 

the robustness of the analysis. 

Table 7.20: Details of the strain-rate predictions using the m-GBS model 

System T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

1673 

358.7 

0.0881 19.5800 1.44 0.028 0.014 0.9972 

1723 0.0886 17.4200 1.59 0.0229 0.0114 0.9945 

1773 0.0894 3.3600 4.11 0.0442 0.0221 0.9960 
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2 

1673 

374.6 

0.0898 7.4385 1.56 0.0047 0.0014 0.9882 

1723 0.0904 5.7491 1.82 0.0152 0.0046 0.9749 

1773 0.0917 4.6019 1.89 0.0298 0.0099 0.9665 

3 

1623 

375.2 

0.0796 9.4542 1.04 0.0008 0.0003 0.9998 

1648 0.0797 9.2143 1.08 0.0012 0.0005 0.9996 

1673 0.0798 8.8145 1.08 0.0016 0.0006 0.9996 

1698 0.0800 8.6147 1.02 0.0013 0.0005 0.9997 

1723 0.0801 4.0975 1.05 0.0028 0.0011 0.9949 

 

Table 7.21: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom 

Fitting constants CC 

P1x10
-3

 P2x10
-3

  

1 
Al2O3 30ZrO2 

30Al16Si2O13 

0.7233 7.2865 35.958 0.99 

0.7449 57.4951 91.9791 0.99 

0.7665 250.3922 -2642.29 0.99 

2 
Al2O3 30ZrO2 

30Al16Si2O13 

0.7233 6.6130 -23.2809 0.98 

0.7449 48.6727 -217.045 0.97 

0.7665 216.8111 -860.89 0.96 

3 
Al2O3 25NiAl2O4 

25ZrO2 

0.7017 0.6864 0.9524 0.99 

0.7125 1.2391 2.2615 0.99 

0.7233 2.9425 4.0455 0.99 

0.7341 4.7465 -1.52 0.99 

0.7449 7.7078 -7.045 0.99 

 

Table 7.21 presents the results for the systems analyzed as per Equation 7.1, which is the 

mathematical form of the m-GBS model. Good correlation coefficients have been 

obtained. The results are plotted in detail in Figures 7.36-7.38. 

 
Figure 7.36: Strain rate predictions and   versus sinh(σ-σ0) plot for system 1 
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Figure 7.37: Strain rate predictions and   versus sinh(σ-σ0) plot for system 2 

 
Figure 7.38: Strain rate predictions and   versus sinh(σ-σ0) plot for system 3 

 

 

7.12 Silicon-based ceramics 

A silicon nitride ceramic [71] was analyzed here. Experimental parameters were: stress 

10.07 MPa to 223.27 MPa; strain rate 6.03x10
-6 

s
-1

 to 0.89x10
-3 

s
-1

; temperature: 1723 K-

1873 K; grain size 68 nm; maximum m ~ 0.5. Equation 7.7 was used by the investigators 

to interpret the results. Interface-controlled solution-precipitation with two dimensional 

nucleation was suggested to be the RCM at low stresses and GBS accommodated by 

diffusion-controlled solution-precipitation at higher stresses. Arrhenius plot of log İ  

versus (1/T) was used to compute the activation energy. This analysis also is 

phenomenological, lacks in topological and microstructural evidence and suffers from the 

same limitations as the other analyses based on Equations 7.5/ 7.7. 
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Results of the analysis using the m-GBS model: Table 7.22 presents the results for the 

analysis based on the m-GBS model. Good tolerance values were obtained. The threshold 

stress for the onset of mesoscopic boundary sliding and the unit shear strain followed the 

expected trends with a change in the test temperature. All the values of the free energy of 

activation were fairly close to each other making the findings consistent with Arrhenius 

kinetics. 

 

Table 7.22: Details of the strain-rate predictions using the m-GBS model 

System T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

1723 

444.8 

0.1285 12.4299 1.19 0.0027 0.0010 0.9936 

1773 0.1287 8.3220 1.26 0.0065 0.0026 0.9981 

1823 0.1287 3.7248 1.26 0.0059 0.0024 0.9967 

1873 0.1289 3.2416 1.14 0.0058 0.0026 0.9984 

 

From the Table 7.23 it can be concluded that Equation 7.1 satisfactorily describes optimal 

superplastic flow. Excellent values for the correlation coefficient were obtained. 

Table 7.23: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom 

Fitting constants CC 

P1 P2x10
-3

  

1 Si3N4 5Y2O3 2Al2O3 

0.7929 0.5939 4.1133 0.99 

0.8159 1.7834 13.0443 0.99 

0.8389 4.8779 18.2629 0.99 

0.8619 15.3412 21.3169 0.99 

 

The obtained results are plotted in detail in Figure 7.39. 
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Figure 7.39: Strain rate predictions and   versus sinh(σ-σ0) plot for system 1 

 

 

7.13 Olivine 

Results for the superplastic deformation of Olivine reported in Ref. [76] were considered 

for the present analysis. The experimental parameters were: strain rate 1.22x10
-6 

s
-1 

to 

97.76x10
-6 

s
-1

;  stress 161 MPa to 420 MPa; grain size 5.4 μm; temperature range 1423 K-

1523 K; reported value of activation energy 445 kJ.mol
-1

. Equation 7.7 was used to 

describe the flow. However, to scale to the mantle conditions, a pressure term was 

introduced by replacing Q by E+PV in Equation 7.7. The values of n and p are suggested 

as 2.9 and 0.7; GBS is suggested to be the dominant deformation mechanism. The basis 

of the analysis, viz. Equation 7.7, makes it susceptible to the same criticisms as the 

analyses discussed above. 

Results of the present analysis: Table 7.24 presents the results obtained using the m-GBS 

model. It can be seen that consistent with Arrhenius kinetics, almost identical values for 

the free energy of activation have been predicted, the unit shear strain and the threshold 

stress for the onset of mesoscopic boundary sliding follow the expected trends with a 

change in the temperature of deformation. Good tolerance values were also obtained. 

However, compared with the values pertaining to metallic materials and ceramics, the 

predicted values of the unit shear strain were substantially higher than the value of ~ 0.1, 

assumed based on bubble raft experiments. The complex structure and composition of 

Olivine – a mineral - could be the reason. But, this is yet to be proved. 
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Table 7.24: Details of the strain-rate predictions using the m-GBS model 

System T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

1423 

344.8 

0.3991 143.8200 1.24 0.0015 0.0008 0.9599 

1473 0.4000 107.9910 1.51 0.0049 0.0022 0.9600 

1523 0.4011 82.9150 1.85 0.0047 0.0027 0.9825 

 

Table 7.25 presents the values of the constants in the constitutive equation, Equation 7.1. 

It can be seen that very good values for the correlation coefficient are obtained and the 

equation represents optimal superplastic flow accurately. 

Table 7.25: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom 

Fitting constants CC 

P1x10
-3

 P2x10
-3

  

1 San Carlos Olivine 

0.6549 0.0587 -1.4519 0.96 

0.6779 0.3591 -26.4098 0.96 

0.7009 0.6124 -20.8976 0.98 

 

The detailed results are presented in Figure 7.40. 

 
Figure 7.40: Strain rate predictions and   versus sinh(σ-σ0) plot for system 1 
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7.14 Limestone 

Superplastic deformation of limestone, reported in Ref. [77], was  chosen for the analysis. 

Experimental parameters were: stress 1 MPa to 169.3 MPa, strain rate 5.2x10
-6 

s
-1

 to 

6.4x10
-3 

s
-1

; grain size 4.2 μm; temperature 973  K to 1173 K; reported value of activation 

energy ~210 kJ.mol
-1

. Equation 7.7 was used to describe the flow. The value of n varied 

from ~2 to ~4; grain boundary diffusion accommodated by GBS is suggested as the 

RCM. The limitations in the analysis are the same as in the other interpretations discussed 

earlier.  

Results of the analysis using the m-GBS model are presented in Table 7.26. It can be seen 

that the tolerance levels are well below the permissible limit of an order of magnitude, the 

unit shear strain and the threshold stress for the onset of mesoscopic boundary sliding 

follow the expected trends with a change in the test temperature. 

Table 7.26: Details of the strain-rate predictions using the m-GBS model 

System T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

973 

230.4 

0.0727 12.9654 5.69 0.0267 0.0074 0.8449 

1073 0.0774 6.2727 6.17 0.0335 0.0093 0.8049 

1173 0.0824 0.9700 7.09 0.013 0.0041 0.8198 

 

Table 7.27 presents the details of the analysis in terms of the constitutive Equation 7.1. It 

can be seen that very good values for the correlation coefficient are obtained vindicating 

the accuracy of the chosen equation. 

Table 7.27: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom 

Fitting constants CC 

P1x10
-3

 P2x10
-3

  

1 Limestone 

0.8862 28.5832 -754.261 0.81 

0.9772 67.666 -1004.58 0.79 

1.0683 37.3668 -14.7838 0.81 

 

The detailed results are plotted in Figure 7.38. 
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Figure 7.41: Strain rate predictions and   versus sinh(σ-σ0) plot for system 1 

 

 

7.15 Anorthite-Diopside 

Superplastic deformation of two forms of synthetic Anorthite-Diopside, dry and wet [78], 

were analyzed. Experimental parameters were: grain size ~3.05 μm; temperature range 

1273 K-1473 K; strain rate 0.6x10
-6 

s
-1

 to 71x10
-6 

s
-1

; stress from 15 MPa to 0.51 GPa; 

activation energy from 363 kJ.mol
-1

 to 571 kJ.mol
-1

. GBS accommodated by dislocation 

is suggested to be the RCM. Power law creep, similar to Equation 7.7, was used for the 

analysis, but with the introduction of an additional pressure term, as in the case of 

Olivine, for obtaining the activation energy. 

Table 7.28 presents the details of the analysis carried out in terms of the m-GBS model. It 

can be seen that good predictions have been made. The threshold stress for the onset of 

mesoscopic boundary sliding and the unit shear strain follow the expected trends with a 

change in the temperature of deformation. 

Table 7.28: Details of the strain-rate predictions using the m-GBS model 

System T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

1323 

329.2 

0.4816 6.4683 1.08 0.0013 0.0005 0.9817 

1373 0.4845 4.5613 1.24 0.0010 0.0004 0.9977 

1423 0.4864 0.0165 1.45 0.0014 0.0006 0.9981 

2 
1223 

311.5 
0.4600 8.4240 1.12 0.0007 0.0003 0.9630 

1323 0.4657 5.0414 1.15 0.0015 0.0007 0.9986 
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1373 0.4695 2.2885 1.18 0.0026 0.0013 0.9955 

Table 7.29 presents the fitting constants for Equation 7.1 for both the Anorthite-Diopside 

systems and it can be seen that very good correlation coefficients have been obtained 

vindicating the choice of Equation 7.1 to describe optimal superplastic flow in the system. 

Table 7.29: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom 

Fitting constants CC 

P1x10
-3

 P2x10
-3

  

1 Anorthite-Diopside, dry 

0.7257 0.0378 -1.3555 0.98 

0.7532 0.2756 -0.6525 0.99 

0.7806 0.8574 1.7636 0.99 

2 Anorthite-Diopside, wet 

0.6709 0.0206 0.1649 0.96 

0.7257 0.3665 -1.4907 0.99 

0.7532 1.2421 -5.9204 0.99 

 

The detailed results are plotted in Figures 7.42 and 7.43. 

 
Figure 7.42: Strain rate predictions and   versus sinh(σ-σ0) plot for system 1 
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Figure 7.43: Strain rate predictions and   versus sinh(σ-σ0) plot for system 1 

 

7.16 Fine Grained Ice 

Superplastic deformation of fine grained ice, reported in Ref. [79], was analyzed. 

Experimental parameters were: strain rate 28.1x10
-9 

s
-1

 to 3x10
-6 

s
-1

; stress 0.75 MPa to 

7.8 MPa; grain size 10 μm; temperature range 199 K to 220 K; reported value of 

activation energy is 49 kJ.mol
-1

. Discussions on the mechanisms of superplastic 

deformation are speculative. 

From Table 7.30 it can be seen that good predictions have been made using the m-GBS 

model. Consistent with Arrhenius kinetics, the predicted values of the free energy of 

activation at all temperatures were very close and the unit shear strain and the threshold 

stress for the onset of mesoscopic boundary sliding followed the expected trends with a 

change in temperature. However, the correlation coefficient obtained at one temperature 

was rather poor and this could be due to the significant scatter present in the experimental 

results at that temperature. 

Table 7.28: Details of the strain-rate predictions using the m-GBS model 

System T, K 
ΔF0 

kJ.mol
-1

 
γ0 

σ0 

MPa 
MT SD AE CC 

1 

199 

53.1 

0.0696 2.5228 1.46 0.0002 0.0001 0.9789 

219 0.0717 0.6170 3.33 0.0009 0.0003 0.4674 

220 0.0717 0.4192 4.77 0.0006 0.0002 0.9024 

 

Table 7.29 presents the fitting constants in terms of Equation 7.1. Here also the 

correlation coefficient at the same single temperature is rather low. At the other two 

temperatures, however, good fits were obtained. 

Table 7.31: Fitting constants and the correlation coefficient for Equation 7.1 

 
System Thom 

Fitting constants CC 

P1 P2x10
-3

  

1 Fine grained ice 

0.7285 0.0413 -0.8334x10
-3

 0.97 

0.8018 0.1143 0.3918 0.46 

0.8054 0.4449 -0.2642 0.90 
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The detailed results are plotted in Figure 7.44. 

 
Figure 7.44: Strain rate predictions and   versus sinh(σ-σ0) plot for system 1 

 

 

7.17 Conclusion 

Based on a detailed analysis involving 42 superplastic material systems, it could be 

concluded that the mesoscopic grain boundary sliding controlled flow model is able to 

describe optimal superplastic flow accurately with the help of two fitting constants, ΔF0 

and σ0. The model also suggests a way of calculating these two constants ab initio.  

Historically, Backofen and coworkers [84] found many similarities between superplastic 

flow and that of hot polymers. Therefore, they chose to represent the flow of superplastics 

in terms of the well-known equation σ = K mİ  or İ  = K1σn
, which is common in the 

polymer literature, and this description has persisted over several decades. This has meant 

that even in the optimal range (regions I and IIa of the isothermal log σ – log İ  curve), 

superplastic flow has to be represented as a non-linear curve (quadratic, as m is very low 

in region I, but rapidly rises in IIa). As a result of the present analysis, it has been possible 

to demonstrate that there is actually a linear relationship between the strain-rate and the 

“effective stress” (σ- σ0); Equation 7.1). In the language of continuum mechanics, a 

material which obeys an equation similar to Equation 7.1 would be known as a Bingham 

solid. Therefore, it becomes possible to place the mechanics of optimal superplastic flow 

as a clearly defined domain within the field of Mechanics of Solids. Development of this 
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idea to obtain a yield criterion for optimal superplastic flow which has frame of reference 

indifference, e.g. the von Mises criterion in plasticity, then becomes possible. This aspect 

is beyond the scope of the present thesis. 
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8. Use of the m-GBS model for understanding the Inverse Hall-Petch 

effect 

Hall-Petch (alternatively, grain boundary) strengthening is a phenomenon in the presence 

of which the yield stress of a material increases with decreasing grain size. Some of the 

earliest reported cases of the Hall-Petch effect can be found in Refs. [84,85]. The 

mathematical form of the Hall-Petch effect is represented as, 

y

y 0

k
ı ı

L
   8.1 

 

However, below a certain grain size in the lower end of the nanometer range, inverse (or 

reverse) Hall-Petch effect comes into play and decreasing the grain size decreases the 

hardness or has an effect similar to that of increasing the temperature [3]. Inverse Hall-

Petch (IHP) effect is often seen when the grain size is less than 10-15 nm (invariably 

below ~50 nm). As decreasing the grain size decreases hardness, it could be conjectured 

that creep/ superplasticity-like behavior could be observed even at room temperature, 

provided the grain size is on the lower end of the nanometer level. Based on a 

micromechanics approach, Refs [24,86] have presented an explanation for the IHP effect 

using a refined m-GBS controlled flow model. 

Briefly, grain boundary sliding and crystallographic slip dominated deformation are 

essentially independent deformation mechanisms and the process that requires less stress 

for its commencement will be the favored deformation mode under a given set of 

experimental conditions. When crystallographic deformation is dominant, grain 

refinement will strengthen the material due to which the Hall-Petch effect is observed. 

However, when grain boundary sliding is dominant, the material will be weakened by 

grain refinement and hence inverse Hall-Petch effect is observed. 

Chapters 5 and 7 contain a detailed description of the mesoscopic grain boundary sliding 

controlled flow model, as relevant to superplastic deformation.  In brief, as mentioned 

earlier, the high-angle grain boundary is divided into a number of atomic scale ensembles 

that contain free volume. A basic sliding unit is constructed around each of these free 

volume sites. The basic sliding unit is assumed to lie symmetrically on either side of the 
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grain boundary. The basic sliding units are assumed to operate simultaneously, 

independent of each other. When the basic sliding units situated on a boundary slide 

sequentially, a boundary offset will result when the end of the boundary is reached. Such 

a sliding process (at a boundary) will get blocked at a steric hindrance, e.g., a triple 

junction. For substantial sliding to occur on a mesoscopic scale, two or more grain 

boundaries should join together to form a plane interface (by the flattening of the “hills” 

and “valleys” present along the grain boundaries), which by further interconnection with 

similar plane interfaces results in long range sliding. A portion of the energy supplied by 

the externally applied stress is used to form the plane interfaces, i.e. a long range 

threshold stress, Ĳ0, should be overcome before the onset of mesoscopic boundary sliding. 

Mathematical development of the ideas leads to the conclusion that Ĳ0 is given by 

Equation 8.2 [24,26,30,31]. 

B
0

f

2GΓ (ΔA / A)Ĳ
α σA

   
8.2 

 

For the calculations, the shape of the grain is assumed to be rhombic dodecahedron [27]. 

Therefore, the term ΔA in Equation 8.2 is given by Equation 8.3. 

 

2.5 2 2W 6ΔA β L 1
L

    
 

  8.3 

 

From Equation 8.3 it is obvious that ΔA=0, when L=L0=2W6
0.5

. Considering L1=2
1.5

3
-

0.75σΓB/(Gαf), Equation 8.2 can be rewritten as Equations 8.4-8.6. 

0.5

1 0
L LĲ G 1
L L


       

 ; when L>L0 8.4 

Ĳ0=0; when L<L0 8.5 
0.5

1LĲ G
L


   
 

; when L>>L0 8.6                 
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Details of the analysis: In this study, a total of 7 systems, displaying inverse Hall-Petch 

effect were analyzed using the m-GBS model. Four of them were intermetallics, one was 

quasi-crystalline and the other two were nanocrystalline systems [87–92]. Further, as the 

shear modulus for only two systems (one intermetallic and the other quasi-crystalline) 

were available, for the rest the data were extracted from the NIMS (National Institute of 

Materials Science, Tsukuba, Japan) database. In case of two (nanocrystalline) systems, 

computations were performed assuming the shear modulus to be 0.70G, 0.75G and 

0.80G, where G is the shear modulus of the material when the grain size is in the micron 

range. (It is well known that the shear modulus decreases drastically (by ~ 20 - 30%) 

when the grain size is in the lower range of the nm scale [93]. The strain-rate of 

deformation in none of the hardness tests has been recorded. Therefore, following Ref. 

[94], the strain rate was assumed to lie in the range of 5x10
-4 

s
-1

 to 5x10
-2 

s
-1

.Therefore, 

the free energy of activation was computed for these extreme values. Using the computed 

values of the free energy of activation, the unit shear strain values were refined. The 

procedure adopted is explained below in detail. 

Procedure adopted: The relationship between the steady state hardness, HV, and the 

instantaneous hardness, H0, is as shown in Equation 8.7 [24,86]. 

0.52
v 0 0

m
H H (L L )

L
     8.7 

 

Hence, m2 is the slope of the plot of Hv versus (L-L0)
0.5

/L and is equal to GL1
0.5

/C. Here, 

C (=3) is the conversion factor from hardness to tensile stress, as the material yield 

behavior is assumed to be that of a von Mises solid [49]. N, which is assumed to be a 

constant within the narrow grain size range, is computed using the value of L1, already 

defined as L1=2
1.5

3
-0.75σΓB/(Gαf). (Strictly, over a large range of grain size and 

temperature, N is a strong function of both grain size and temperature. Here the 

temperature is kept constant and so the approximation of L1 to be a constant is only over a 

small grain size range). The values of ΓB is approximated as 1 J.m
-2 

[23,25,26] and the 

form factor, αf is taken as ~unity. The computed value of L1 is used in Equation 8.7 to 

compute the hardness equivalent of the threshold stress needed for the onset of 

mesoscopic GBS (the second term on the RHS of Equation 8.7). Alternatively, the long 
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range threshold shear stress, Ĳ0, can also be computed using Equation 8.4. Equations 8.8 

and 8.9, which result from a mathematical development of the ideas concerning the m-

GBS model [22,23,95,96] are used to compute the free energy of activation for the rate 

controlling process and the refined values of γ0, for the strain rate values given above (see 

Chapters 5 and 7 also). 

0 0 0 0 0
2WȖ ν (Ĳ Ĳ )Ȗ V ΔFȖ sinh exp

L 2kT kT

       
   

 8.8 

 

 2 2
0 01 0 2 0

ΔF GVȕ Ȗ ȕ ε   8.9 

 

It can be readily seen that the values of ΔF0 and ı0 are inter-dependent. Therefore, their 

stable values are obtained by iteration. 

Results and discussion: The results of the analysis are presented in Table 8.1. 

Table 8.1: Results of the analysis 

N L, nm τ0, GPa γ0 
ΔF0, kJ.mol

-1
 

Ȗ =5x10
-2

s
-1

 Ȗ =5x10
-4

s
-1

 

System: Al 25Cu 12.5Fe, G=74GPa [87] 

1.4 

38.8 1.36 

0.0688 184 197 
23.6 1.68 

20.6 1.78 

17.6 1.89 

System: Ni 18Fe, G=79.2GPa [88] 

18.0 13.9 0.95 0.70G 0.0795 

117 129 20.7 12.7 0.98 0.75G 0.0768 

23.6 11.0 1.03 0.80G 0.0743 

System: Zn, G=43GPa [89] 

7.8 11.0 0.92 0.70G 0.0812 

85 98 8.9 7.9 0.99 0.75G 0.0784 

10.1 6.0 1.00 0.80G 0.0758 

System: TiAl, G=61.8GPa [90] 

75.7x10
-3

 

21.4 3.62 

0.0698 202 214 

18.7 3.82 

17.1 3.94 

12.5 4.38 

12.1 4.42 

11.0 4.55 

System: NiAl3, G=50.6GPa [86] 
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15.4x10
-3

 

60.9 2.81 

0.0925 146 158 

53.0 3.00 

49.4 3.10 

45.0 3.24 

42.0 3.34 

25.6 4.17 

System: NbAl3, G=15.4GPa [91] 

1.8x10
-3

 

34.0 3.43 

0.1475 185 198 

30.4 3.60 

27.0 3.79 

25.4 3.88 

22.0 4.12 

System: Al5Fe2, G=61.8GPa [92] 

0.85 

32.0 1.52 

0.0711 158 170 
23.6 1.73 

11.0 2.27 

10.0 2.33 

 

When the correlation coefficient between the measured and the predicted values of HV 

(Equation 8.7; prediction: Hv versus (L-L0)
0.5

/L is linear) was calculated, in all cases, but 

one, the value of the correlation coefficient was >0.9. But, in case of Ni18Fe it was ~0.8. 

This is good support for the usefulness of the m-GBS model in explaining the inverse 

Hall-Petch Effect. However, it was also found that the correlation coefficient had similar 

values if hardness versus log (L) or hardness versus L was plotted [19, 20]. These values 

are also presented in Table 8.2. 

Table 8.2: Results of the analysis 

 System L, nm Hv, GPa 
Correlation coefficient for Hvversus 

Log (L) L (L-L0)
0.5

/L 

1 
Al 25Cu 12.5Fe 

[87] 

38.8 11.41 

0.95 0.92 0.96 
23.6 10.46 

20.6 9.31 

17.6 8.56 

2 Ni 18Fe [88] 

13.9 6.15 

0.79 0.81 0.78 12.7 5.70 

11.0 5.71 

3 Zn [89] 

11.0 1.06 

0.99 0.98 0.99 7.9 0.84 

6.0 0.58 

4 TiAl [90] 

21.4 12.08 

0.99 0.99 0.99 18.7 11.25 

17.1 10.69 
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12.6 8.50 

12.1 8.25 

11.0 7.08 

5 NiAl3[86] 

60.9 11.47 

0.99 0.99 0.99 

53.0 10.72 

49.4 10.06 

45.0 8.67 

42.0 8.06 

25.6 4.50 

6 NbAl3[91] 

34.0 10.28 

0.90 0.88 0.91 

30.4 9.86 

27.0 9.36 

25.4 9.14 

22.0 6.42 

7 Al5Fe2 [92] 

32.0 8.78 

0.97 0.95 0.97 
23.6 8.08 

11.0 5.69 

10.0 4.17 

 

This last finding clearly underlines the risk of choosing a physics-based/ atomistic model 

based solely on macroscopic correlations. However, in the analysis of Conrad and Naryan 

[97,98] (where Hv is a function of L or log (L), depending on the degree of approximation 

employed), the effective stress is taken as equal to the applied stress, i.e. the strain rate 

sensitivity index , m=1. But, in nanocrystalline systems, particularly under the conditions 

of the present tests, the value of m is in the range of 0.02 to 0.08 [99], which brings into 

question the relevance of the model presented in [90, 91]. In contrast, in the m-GBS 

model, depending on the experimental conditions, m can range from very low values to 

unity and it is readily seen that for the sets of data analyzed in this chapter m is in the 

range required by the experiments. 

In Table 8.1, a significant spread in the value of N is observed, i.e., from 0.076 to 23.4. It 

is noteworthy that values of N distinctly greater than unity are seen only when the grain 

size is less than 15 nm, which is where the role of diffusion in accommodation of the 

GBS is likely to be significant. It is yet another supporting piece of evidence for the m-

GBS model. Moreover, the values of the unit shear strain in case of all the systems are 

close to ~ 0.1, the approximate value suggested by the bubble raft experiments and MD 

simulations [30,31]. 
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9. Conclusions and suggestions for future work 

Conclusions: 

1. Universality in the mechanical response of superplastic materials is demonstrated 

using the dimensionless parameters: σ/σopt  – 
optε / ε  – m/mopt – ΔF0/Tm – ηapp/ηabs. 

It is shown that the sigmoidal log (σ) versus  log ε  curve, when both the stress 

and the strain-rate are normalized with respect to their optimal values for all the 

materials, a universal curve results, which is independent of the material involved. 

Fits were attempted for the normalized stress, strain-rate and temperature data for 

the different systems in terms of  

a. The equation often used to describe superplasticity in the literature, viz. 

ε ασ  with m = 0.5 and  

b. The m-GBS controlled flow model proposed from our research group. A 

good fit of 0.95 was obtained for the m-GBS model, while the fit was poor 

at 0.7 for the model based on the Dorn equation, with m = 0.5. 

c. When the stress, strain-rate and temperature data for the different systems 

are fitted using a 2
nd

 order regression equation also a good coefficient of 

correlation of 0.96 was obtained. But, such a regression equation lacks 

physical significance. Thus, the universality in the sigmoidal nature of 

stress versus strain-rate curve for superplastic deformation for different 

materials could be established. 

When the “absolute” viscosity was computed for the ideal case of n = 1 in the 

normalized stress-strain rate space and that value was used to normalize the 

apparent viscosity at different stress levels, temperatures etc., for different 

materials, a good correlation coefficient of ~0.95 was obtained for the normalized 

viscosity versus the normalized strain-rate versus temperature plot, presented as a 

universal curve. 

It had already been shown in an earlier work that when the strain-rate sensitivity 

index is normalized with respect to its optimal value and plotted against the 

normalized strain-rate, a universal curve resulted which involved many systems. 

This was re-established in this work using more data points. Here, in addition the 

effect of temperature on the value of m was also considered as the third variable. 
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It was seen that the correlation coefficient in two dimensions, i.e. normalized 

strain rate sensitivity index versus normalized strain rate, was significantly higher 

than for the three dimensional case, i.e. normalized strain rate sensitivity index 

versus normalized strain rate versus normalized temperature. It is suggested that, 

as methods for determining the strain rate sensitivity index do influence its value 

and as values reported by various investigators have been considered for the 

analysis here, a correlation coefficient of ~0.80 only could result for the three 

dimensional case, whereas the minimum correlation coefficient in two dimensions 

was ~0.90. 

It could also be seen that when the free energy of activation for the rate 

controlling process, ΔF0 is normalized with respect to RTm, a very similar / 

comparable value is obtained for many superplastic systems. As the strength of 

the inter-atomic bonds is proportional to the melting temperature, if optimal 

superplasticity arises in the different material systems because of the same rate 

controlling process (of m–GBS, in our view), it would stand to reason that the 

ratio (ΔF0/RTm) is nearly constant for the different systems, which again is a 

demonstration of the universality of the phenomenon of superplasticity. 

2. The mesoscopic-grain boundary sliding controlled flow model for superplastic 

deformation has been shown to be applicable to systems of a wide range of grain 

sizes ranging from 65 nm to 24 μm, to different classes of materials including 

metals and alloys, intermetallics, ceramics, geological materials, ice, metals with a 

quasi-crystalline phase, metals of a quasi-single phase and also over a wide range 

of strain-rates ranging from ~10
-6

 s
-1 

to ~10 s
-1

 and temperature ranges. Although 

predictions within an order of magnitude are considered to be very good in studies 

of this kind, most of the predictions were well within the limiting factor of 10. 

Also, the unit shear strain associated with unit boundary sliding event followed 

the expected trend of increasing with increasing temperature in all the cases. The 

long-range threshold stress for the onset of mesoscopic boundary sliding followed 

the expected trend of decreasing magnitude with increasing temperature in all but 

for one ZrO2 system at one temperature. This exception could be due to 

inaccuracies in the experimental measurements. The free energy of activation for 

similar materials, calculated from the experimental data reported by different 
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investigators turn out to be similar/ comparable, as should be the case in a sound 

analysis. 

3. Mesoscopic-grain boundary sliding has. been used to satisfactorily explain the 

phenomenon of inverse Hall-Petch effect. Seven systems exhibiting IHP were 

considered here for the analysis. Although, the correlation coefficient in different 

cases i.e. Hv versus log (L), L (these first two corresponding to a model due to 

Conrad and Narayan) and (L-L
0
)
0.5

/L (for the mesoscopic GBS model) was similar 

and good in all the cases, this study demonstrates the risk inherent in choosing 

atomistic models based solely on macroscopic correlations. Unlike in the model of 

Conrad and Narayan, where effective stress and the applied stress are considered 

to be the same, which makes m = 1 (totally unsupported by experimental data), 

using the m-GBS model to analyze the experimental data can account for the low 

values of m found in the experimental studies. 

 

Future work: 

1. It is planned to use the mathematical form of the m-GBS model as the constitutive 

equation for developing FEM packages for industrial forming processes that 

exploit superplastcity. This will allow variations in the m values during forming to 

be taken into account, essential for efficient process control. 

2. As GBS control has been shown to be a mechanism distinct from diffusion 

control, it is proposed to identify regions of GBS control in deformation 

mechanism maps, beginning with the material, Nickel, for which sufficient data 

exist. 

3. It is proposed to construct the universal maps for superplastic deformation in 

much greater detail by analyzing more systems belonging to different classes of 

material. This way, it is hoped that the dependence on the experimental variables 

of the phenomenon of superplasticity will be brought out very clearly.  
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Abstract: The equation K mσ ε= , where σ  is the applied stress, ε  is the strain rate, K and m are 
material constants that depend on stress / strain rate, temperature and grain size is often used to 
describe structural superplasticity. The general shape of the logσ - logε curve is sigmoidal. Based 
on limited data, it was suggested by us earlier that a universal σ -ε  curve could exist in a properly 
normalized space. ε  and m are normalized with respect to optε  and maxm , the strain rate at which m 
is a maximum and the maximum m value respectively. Here a multi-dimensional relationship 
involving opt/σ σ - opt/ε ε - max/m m - o / kF T∆ - / optη η  is developed; optσ  corresponds to optε , oF∆  is 
the free energy of activation for the rate controlling mechanism, k the Boltzmann constant, T the 
absolute test temperature, η  the (apparent) viscosity of the superplastic alloy and optη  is the 
viscosity of the same alloy for 1m =  in a dimensionless σ -ε  space. Using data concerning many 
systems, the phenomenology of structural superplasticity in all classes of materials is shown to be 
unique. 

Introduction 
Structural superplasticity, observed usually in micron- and sub-micron grained materials at high 

homologous temperatures ( mT 0.4 T≥ , where T  is the experimental temperature and mT  is the 
absolute melting temperature of the material being tested) is a strain-rate sensitive phenomenon.  
Mathematically, it is often represented as K mσ ε= , where σ  is the externally applied stress, ε   the 
corresponding strain rate, m  the strain rate sensitivity index (>0.3 for superplastic flow under 
uniaxial stressing) and K  is a grain size-, temperature- and material-dependent parameter [1, 2]. 
Experimentation over a wide range has revealed that the lnσ - lnε  curve has a sigmoidal shape; 
hence a maximum appears in the lnm ε−  curve at an intermediate strain rate, which is the strain-
rate up to which optimal superplasticity is observed [2]. Using limited experimental data, 
universality in the normalized values of m  in isothermal superplasticity was proposed earlier [2]. 
The influence of T  on universal superplastic behavior is examined here. 
A mesoscopic grain boundary sliding controlled flow model for optimal superplastic deformation 
was presented [3-5]. This was verified in several systems and recently a standardized procedure for 
experimental validation involving the use of a numerical solution has been outlined [6]. It is well 
understood that the rheological response of superplastic alloys in the optimal range is visco-plastic, 
with viscosity decreasing with increasing strain rate (non-Newtonian) [1, 7]. As the physical 
mechanism controlling the rate of superplastic flow is regarded to be the same for different classes 
of materials like metals and alloys, ceramics, metal- and ceramic- based composites, intermetallics, 
nanostructured materials, bulk metallic glasses etc., a case could be advanced that the 
phenomenology of this process also is universal. In this paper this hypothesis is tested. 
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Analytical Procedure 
It was pointed out earlier that a universal curve could exist when the values of the strain rate 

sensitivity index are normalized with respect to the optimal value of the strain rate sensitivity index 
and plotted against a normalized strain rate [2].  But, m depends on the temperature of deformation 
as well and here the effect of the homologous temperature on this universal curve is also examined. 
Bringing temperature of deformation into the analysis allows one to determine in addition the free 
energy of activation ( )oF∆ , and the apparent viscosity ( )η , which varies with both strain rate ( )ε  
and temperature ( )T . Evidently when oF∆  is normalized with respect to ( )kT , where k is the 
Boltzmann constant, such values for all superplastic systems should fall within a narrow band. As 
for the values of the apparent viscosity of materials, in this paper, it is normalized as a function of 
the viscosity in the strain rate – normalized stress space at which m = 1.0 [8] and plotted against the 
normalized strain rate ( )opt/ε ε . In fact, this should be a three dimensional plot, with the 
homologous temperature ( )T/Tm  being plotted along the third axis. Work with regard to this 
extension is in progress. 
Experimental results published by [9-19] are used here. 

Results and Discussions 

Strain rate sensitivity index: Experimental results reported in [9–13] were analyzed and the 
melting temperature was obtained from [20]. Fig. 1 shows the universal superplastic curve, which 
has a quadratic shape, and in Table 1, the coefficient of correlation for a second degree fit for each 
homologous temperature is presented. It is noted that in Fig. 1 the approximate curves drawn do 
demonstrate a “band” which is dependent on temperature. And most of the data points fall within 
the band. 
 

 
Figure 1: Universal superplastic curve 
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Table 1: Coefficient of correlation for the systems in Fig. 1 
Sl. 
No System composition Homologous 

Temperature 
Coefficient of 

correlation 
1 Al 5.7Mg 0.32Sc 0.3Mn 0.56 0.98 
2 Fe 0.168C 1.361 Mn 0.453 Si 0.59 0.61 
3 Al 5.7Mg 0.32Sc 0.3Mn 0.61 0.95 
4 Al 5.7Mg 0.32Sc 0.3Mn 0.67 0.88 
5 Al 5.7Mg 0.32Sc 0.3Mn 0.72 0.96 
6 Al 33Cu 0.74 0.90 
7 Al 6Mg 0.3Sc 0.77 0.93 
8 Al 6Mg 0.3Sc 0.80 0.66 
9 Al 6Mg 0.3Sc 0.82 0.91 

Coefficient of correlation is calculated as: 
( )( ) ( )( )0.5 0.52 22 2

XY- X Y

n X - n Y -X Y

∑ ∑ ∑
∑ ∑∑ ∑

; 

where X= / optε ε   and Y= max/m m  
 

 
Free energy of activation: Fig. 2 presents the values of the free energies of activation for the 
experimental data taken from [14–19], normalized with respect to the temperature of deformation, 
i.e., the ( )Fo / kT∆  values are plotted for the different systems. It is seen that the normalized 
activation energy for the metallic systems studied fall within a narrow band. But, the absolute value 
of the normalized activation energy was different for ceramics. A study is presently underway to 
check if the normalized free energy of activation is different for different classes of materials or if a 
better unification that would be applicable to all classes of materials can be achieved.  
 

 
Figure 2: Normalized free energy of activation 
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Viscosity: Systems [14-19] were chosen for the viscosity analysis. The procedure to obtain the 
viscosity, optη , at which in a normalized stress – strain rate space m = 1.0 is explained in [8]. Fig. 3 
shows the results. It is seen that systems of different compositions deforming at widely different 
temperatures exhibit a very similar viscosity variation in the dimensionless viscosity – normalized 
strain rate space. 
 

 
Figure 3: Viscosity versus strain rate 

Conculsions 
From a physical standpoint, the mesoscopic grain boundary sliding model, suggested a while ago 

as controlling the rate of superplastic flow, has been validated for many alloys and classes of 
materials [4, 21]. Here it is shown that phenomenologically the strain rate sensitivity index, free 
energy of activation and viscosity display a universal behavior in respective normalized spaces. This 
understanding should lead to an efficient design of new superplastic alloys that can be formed at 
convenient temperatures. Practical examples are presently being worked out. 
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a b s t r a c t

Inverse HallePetch/grain size softening effect is a phenomenon, which when present, leads to a decrease

in flow stress with a decrease in grain size. The manifestation of this phenomenon at room temperature

in nanostructured intermetallics, including some of our new results, is discussed here. Following earlier

work, the IHP effect is attributed to the loss of intra-crystalline dislocation motion control to mesoscopic

(�a grain diameter) grain/interphase boundary sliding controlled flow, which evidently is confined to the

grain/interphase boundary regions. Equations for estimating the free energy of activation (same as the

activation energy) for the rate controlling process, the free volume fraction present in a basic sliding unit

and the average number of grain boundaries that align to form a plane interface during superplastic

deformation, derived in earlier papers, are used to account for this phenomenon quantitatively in the

present case also.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Nanocrystalline intermetallics are produced by different tech-

niques [1e6]. The observed transition in material response from

hardening to softening with decreasing grain size in the nanometer

range (the so called “inverse HallePetch (IHP)”or “grain size soft-

ening effect”) in this class of materials at room temperature is an

interesting phenomenon and appears to be independent of the

processing route so long as contamination and significant changes

in density due to processing are not present. In this paper, we have

examined the phenomenon of inverse HallePetch effect at room

temperature in some nanostructured intermetallics. Here, in view

of the ambient temperature employed, grain size stability in the

nanostructured intermetallics, after processing, is assured. In

addition, so far as we could see, contamination and related issues

were absent. Therefore, to the best our judgment, the inverse

HallePetch relationship observed in this class of materials is

genuine. In our earlier works [7e13], optimal structural super-

plasticity was attributed to the onset of a mesoscopic (~a grain

diameter or more) grain/interphase (in duplex or multi-phase

materials) boundary sliding flow process. The usefulness of this

model was demonstrated earlier [8,10] for explaining the IHP effect

in some metallic and nanostructured, quasi-crystalline materials.

As stated above, the same model is used here to explain the IHP

effect in intermetallics. While doing this, those aspects of the

model, so far not emphasized, will be brought into focus. In addi-

tion, some new results on IHP in a nanocrystalline intermetallic,

Al5Fe2, obtained by us (unpublished) will be presented and shown

to obey the same relationship. A full account of the mesoscopic

grain boundary sliding controlled flow process and the validation

procedures used are presented elsewhere [7e9,12,13]. For

completeness, in the next section, a brief description of the meso-

scopic grain/interphase boundary sliding controlled flow process is

presented.

2. A brief description of a mesoscopic grain boundary sliding

controlled flow model

It is well known that when deformation mechanisms operate in

sequence, the slowest process will control the strain rate of defor-

mation. In a coupled process like grain boundary sliding (GBS)e GB

diffusion, which one of the two processes is regarded as rate con-

trolling is a matter of choice on the part of the author [14,15]. The

final aim is/should be to account for the experimental observations

in as many systems as possible with the same minimum set of

assumptions. In our model, it is assumed that during optimal

superplasic flow, GBS, accompanied by diffusion in and/or
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dislocation emission from the sliding grain/interphase boundaries

develops to a mesoscopic scale. (The grain interior is considered to

be quasi-rigid, with practically no deformation present in this re-

gion, except for what is needed in the grain boundary neighbor-

hoods, to ensure coherency of deformation). The former (GBS) is

assumed to be the slower and hence the rate controlling process.

The actual accommodation process (diffusion in, dislocation or

partial dislocation emission from the sliding grain boundary re-

gions) will depend on the nature and strength of the obstacles

present in the grain boundaries and the experimental conditions

like strain rate, grain size and temperature.

Several experiments have demonstrated that high-angle grain

boundaries are very conducive to superplastic flow (for a summary,

see Refs. [16,17]). With increasing strain, low-angle boundaries

favorably oriented to the stress axis, will gradually be transformed

into high-angle grain boundaries. Those that are unfavorably ori-

ented will be bypassed by grain rotation, arising from the unbal-

anced shear stresses at the grain boundaries which slide at different

rates that depend on the resolved shear stresses acting on these

boundaries [18]. In other words, in this model superplastic defor-

mation is rate controlled by mesoscopic grain/interphase boundary

sliding along high-angle grain boundaries that are favorably ori-

ented to the stress axis. The repeated observation that superplastic

tendency is far less in materials with microstructures in which

high-angle grain boundary fraction is rather low [19] vindicates this

viewpoint. After a detailed survey of literature [13,20] it has also

been concluded that solitons like vacancies, dislocations etc. get

delocalized in high-angle boundaries and, therefore, it is not

necessary ein fact, not meaningful-to invoke dislocation glide

(based on crystallographic notions) along high-angle grain

boundaries as a concomitant of the GBS process.

In this model, GBS is analyzed as a two-scale process: (a)

atomistic, and (b) mesoscopic.

For mathematical development at the level of atomistics, the

basic sliding unit present in the boundary is assumed to be an

oblate spheroid of about 5 atomic diameters in the boundary plane

and 2.5 atomic diameters in height (zaverage grain boundary

width, see below) in a direction perpendicular to the boundary

plane [7,9]. This way, it has been possible to explain superplastic

flow in crystalline materials as well as bulk metallic glasses on a

common basis [11]. This atomic ensemble is located symmetrically

about the plane of the boundary with one half falling in each of the

two grains that meet to form the boundary (Fig. 1 (a), (b)). The

choice of shape (oblate spheroid) is due to the fact that the strain

field inside a deformed oblate spheroid is uniform, with the help of

which many useful engineering properties can be determined [21].

As has been pointed out, any deviation present in the real shape of

the atom ensemble from the idealized (oblate spheroid) shape is

taken care of by a form factor, a, which has a magnitude, ~1.0 [7].

The average shear strain associated with a unit sliding event (Fig. 1

(c) e (e)) is ~0.1 (arrived at based on bubble raft experiments and

molecular dynamics simulations [22e25]), when the ensemble

moves from one stable/metastable position to the next. It must be

noted, however, that the actual shear strain associated with a unit

boundary sliding event will be a function of the nature and strength

of the interatomic forces present among the atoms that constitute

the boundary. However, the bubble raft experiments reveal the

order of magnitude value that could be associated with the unit

shear strain (~0.1). (An examination of Fig. 1 (d), (e) reveals that

after unit sliding shear strain, a circular dislocation loop (in the

Volterra sense) of Burgers vector zero, will be left on the grain

boundary plane, although crystallographic notions cannot be

associated with such a deformation process (as the atom shuffling

will involve only a very small fraction of the inter-atomic distance).

Thus, a formal (not physical) case can be made for the propagation

of extrinsic dislocations along the boundary during the sliding

process to reconcile this approach with that of Rybin, Nazarov and

Valiev (for a summary, see Ref. [26]).

Based on an extensive analysis of experimental data concerning

many metals, the grain boundary width is assumed to be 2e3

atomic diameters [25]. The elastic energy of the shear and

momentary volumetric distortions (as the basic sliding unit is

embedded inside a solid matrix) accompanying the unit shear

event, DF0, constitutes the free energy of activation for the GBS

process (arrived at by considering the deforming unit and the

surroundings as a whole; same as the activation energy for the rate

controlling process, often discussed in the literature, which only

looks at the deforming unit [12]). Sliding at an individual grain/

interphase boundary described above is rendered ineffective by

steric hindrance, e.g. the presence of a triple junction.

For large scale sliding, the process has to develop to a mesocopic

scale (Fig. 2(a)) and form a plane interface (Fig. 2 (b)). When such

plane interface formation is present simultaneously at different

locations in a test specimen, inter-connection of such plane in-

terfaces will result in large-scale boundary sliding and significant

specimen elongation, i.e., superplasticity is observed. The length of

the plane interfaces so formed is likely to be a strong function of

grain size and temperature. It (the length of the plane interface) can

be of the order of one or more grain diameters. (See later for a

mathematical expression.)

During mesoscopic plane interface formation a portion of the

energy supplied by the applied stress is spent in rearrangingmatter

in the grain boundary region (Fig. 2 (b)). This gives rise to a long-

range threshold stress, t0, needed for the onset of mesoscopic

boundary sliding. The driving force for plane interface formation is

the minimization of the total free energy of the deforming system

and the fact that for this configuration the work done by the

external stress is a maximum, as required by Taylor's principle of

maximum work [7,13]. (In Fig. 2 (c) it is very easy to show using

Herring's equation for equilibrium at a triple junction that

extending the boundary and increasing the magnitude of the

included angle at the triple junction leads to a lowering of the total

free energy of the system [9]). The long-range threshold stress

necessary for plane interface formation is calculated assuming the

grain shape to be rhombic dodecahedron (Fig. 2 (a)), the shape

considered to be the closest to real crystals in polycrystalline ma-

terials [7,8]. As the grain boundary area per unit volume increases

with a decrease in grain size, t0 increases with decreasing grain size

(the number of boundaries aligning to form a plane interface in-

creases with decreasing grain size). In contrast, as the inter-atomic

bonds become weaker with increasing temperature, the rear-

rangement of matter in the boundary regions becomes easier and

t0 decreases with increasing temperature. Experimental support

for these two inferences is available [16,17].

A survey of literature reveals that this model has received

considerable positive attention in the literature dealing with the

deformation of nanocrystalline materials. This is because, in view of

the very fine grain size, the grain boundary regions constitute a

very significant fraction of the total volume of a material and thus,

the idea of viewing the grain interior as a strong phase A and the

grain boundary region as a weaker phase B is very much in vogue.

Recently, the significance of this idea has been recognized beyond

the domain of nanostructured materials. For example [27], have

observed grain boundary sliding at room temperature in severe

plastic deformed aluminum. They have suggested that the grain

boundary region constitutes a weaker, high wetting component

(component B) between high strength AleAl grains (component A).

In other words, the presence of thin GB layers is considered to serve

as an inter-granular lubricant. Such GB layers can also form due to

the so-called pseudo-incomplete GB wetting (see, for example [28],

M.R. Basariya et al. / Journal of Alloys and Compounds 673 (2016) 199e204200



and references cited therein) and facilitate grain boundary defor-

mation processes at ambient temperatures. It is, therefore, heart-

ening to see that the general relevance of our ideas is getting

appreciated across domains now.

Such a description leads to Eq. (1) and Eq. (2) [7,9].

g
·

¼
2Wg0n

L
sin h

�

ðt� t0Þg0V0

2kT

�

exp

�

�
DF0
kT

�

(1)

where g
·

is the shear strain rate, L the average grain size, g0 the

mean shear strain associated with a unit-sliding event, DF0 is the

free energy of activation for the rate controlling process (same as

the activation energy), V0 the volume of the basic sliding unit,

which, for an oblate spheroid, is given by V0¼ (2/3)pW3, withW the

grain boundary width (~2.5 a0), where a0 is the atomic diameter

[21]), n the thermal vibration frequency (1013 s�1 or (kT/h) s�1, with

h Planck's constant), k the Boltzmann constant, T the absolute

temperature of deformation, t the applied shear stress and t0 is the

long-range threshold shear stress necessary to be overcome for the

onset of mesoscopic boundary sliding. And

DF0 ¼
1

2

�

b1g
2
0 þ b2ε

2
0

�

GV0 (2)

with G the shear modulus, and, as shown by Eshelby [21], for the

oblate spheroid shape b1 ¼ 0.944(1.590 � p)/(1 � p) and

b2¼ 4(1þ p)/9(1� p), where p is the Poisson ratio. It is recalled that

in isotropic materials, e.g. texture-free nanostructured materials,

the hardness is approximately equal to three times the uniaxial

tensile or compressive yield stress. For the isothermal case,

assuming von Mises criterion, Eq. (1) can be rewritten as [8,9],

HV ¼ HVa
�
m2

L
ðL� L0Þ

0:5 (3)

where HV is the measured steady state hardness value, HVa
is the

instantaneous hardness recorded on load application and L0 is the

limiting small grain size at which t0 will be equal to zero (¼2√6W)

[8,9,24]. m2 and L1 are constants, defined as:

Fig. 1. (a) Basic boundary sliding unit, (b) elevation view of undeformed basic sliding unit, (c) isometric view of the deformed basic sliding unit, (d) elevation view of the deformed

basic sliding unit, (e) plan view of the deformed basic sliding unit.
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m2 ¼
GL0:5

1

C
L1 ¼ 21:53�0:75N�0:5 gB

Gaf

where C is a conversion factor (for conversion from shear stress to

hardness; it is 3√3 for the von Mises criterion), af a form factor of

the order of unity (to account for the real shape of the basic sliding

unit, which could be different from that of an oblate spheroid), gВ

the specific grain-boundary energy, which for a nanostructured

material isz 1 J$m�2 [29] and N is the number of grain boundaries

that align to form a plane interface.

From Eq. (3) it follows thatm2 is the slope of the hardness versus

[(LeL0)
0.5/L] plot. Therefore, using experimental hardness - grain

size data, L1 and N could be computed.

The threshold stress, in turn, is calculated as [8,9]:

t0 ¼ G

�

L1
L

�

1�
L0
L

��0:5

; L � L0 (4)

Using this value of t0, the free energy of activation,DF0, in Eq. (1)

is calculated. It has also been shown further [9] that

t0 ¼

�

21:5gВ

30:75

�0:5
ðL� L0Þ

0:5

LN0:25
(5)

3. Results and discussion

The first two authors of the present paper have recently

observed IHP in the intermetallic Al5Fe2 (unpublished). Earlier, IHP

was reported in other intermetallics like TiAl [30], NiAl3 [31] and

NbAl3 [32]. The experimental data presented in these papers were

analyzed using the models of Conrad and Narayan [33] (who have

also presented a model for explaining this phenomenon) and the

present authors.

The coefficient of correlation for all the three expressions Hv vs.

ln(L), Hv vs. L (these two dependences correspond to the rigorous

and the approximate forms of the relationship due to Conrad and

Narayan [33]) and Hv vs. (LeL0)
0.5/L (our model) is very similar and

the findings are presented in Table 1. On this basis, both the models

are acceptable.

Amajor limitation of the former analysis [33] is that the effective

stress is taken as the applied stress, i.e., the strain-rate sensitivity

index, m ¼ 1.0. However, in nanocrystalline intermetallics at room

temperature the values of m are in the range 0.02e0.08 [34,35].

Other limitations of that model have already been pointed out in

Ref. [10].

Using our approach, in addition to the prediction that Hv vs.

((LeL0)
0.5/L is a straight line (validated in Table 1), further insights

into the deformation process could be obtained. The experimental

data analyzed here were generated either using a micro- or a nano-

indenter. Following earlier authors [36], the strain rate in the

hardness tests is assumed to be in the range of

5 � 10�2 s�1
e5 � 10�4 s�1. While the shear modulus value for

Al5Fe2 is available from our experiments, for the other systems the

values were taken from the NIMS (National Institute for Materials

Science, Tsukuba, Japan) database. Using Eq. (1) and Eq. (2) and

assuming von Mises criterion, the free energy of activation, DF0, for

the rate controlling process and the accurate values of g0 (which

depends on the nature and strength of inter-atomic bonds present

in a material and the boundary misorientation) were determined

for the four systems as a function of the two strain rates, following

the numerical procedure explained in Ref. [12]. The results are

Fig. 2. (a) Shaded grain boundaries of rhombic dodecahedral grains within which the rate controlling deformation process is confined, (b) planar interfaces resulting from

mesoscopic boundary sliding (XY, X0Y0, X00Y00 etc.) in 2D sections of aggregate of grains of equal size and rhombic dodecahedral shape. When atoms located in the shaded regions are

moved by a shear stress parallel to the sliding boundaries to extend the boundary perpendicular to the shear stress direction to reach the sliding interface, a plane interface results.

(c) Shear-stress driven movement of a boundary triple junction to lower the overall free energy of the system.

Table 1

Degree of fit for the three relations: Hvaln(L), HvaL and Hva(LeL0)
0.5/L.

System Correlation coefficient of H vs

Ln(L) L (LeL0)
0.5/L

TiAl [30] 0.995 0.987 0.994

NiAl3 [31] 0.992 0.990 0.988

NbAl3 [32] 0.905 0.876 0.911

Al5Fe2 (unpublished) 0.970 0.949 0.968
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presented in Table 2. The fit is very satisfactory. Therefore, it could

be concluded that the observed IHP effect in intermetallics is un-

derstandable in terms of the mesocopic boundary sliding

controlled flow process.

With the help of Table 2 some features of the model, so far not

discussed, are brought into focus. While optimal structural super-

plasticity in intermetallics was accounted for in terms of the

mesoscopic boundary sliding controlled flow model in an earlier

paper [12], this is the first time that this model has been used to

explain inverse HallePetch effect in nanocrystalline intermetallics

in a systematic manner. So far as the latter (IHP) phenomenon is

concerned, the relevance of the model has been tested on four

grounds: (a) a good fit for the prediction that Hv versus ((LeL0)
0.5/L)

is linear (Table 1; experimental correlation is also good). (b) The

value of N in Eq. (5). If it is greater than 1.0, the accommodation

during plane interface formation is predominantly by diffusion. If it

is equal to or less than 1.0, it is mostly by dislocation/partial

dislocation emission from the sliding boundaries. The values of N

for all the systems analyzed here is less than one. It follows from the

model [7,9,24] that plane interface formation in the grain size

ranges present in the systems studied is accommodated by the

(faster than GBS) emission of dislocations from the deforming

boundaries, which then traverse the grain to get absorbed at the

opposite boundaries [7,9]. The significant spread in the values of N

(all below 1.0, but falling in the range 0.002e0.846) indicates the

fraction of a boundary that is involved at a time to form a plane

interface on a local scale. This would lead to a prediction that the

misfit produced by a basic boundary sliding event in NbAl3 will be

greater than in Al5Fe2. There is scope for verifying this prediction in

a future study involving the use of molecular dynamics simulations.

(c) The value of g0. The values of the unit shear strain associated

with a basic sliding event in the four intermetallics analyzed here

vary from 0.07 to 0.14. This implies that the mean value of 0.10

arrived at based on bubble raft experiments (which ignores the

system-dependent strength and nature of the interatomic bonds in

the boundary regions) is a realistic value for order of magnitude

calculations. (d) Consistent with experimental results, the presence

of a long range threshold stress, needed for the onset of mesoscopic

grain boundary sliding in the model ensures that the values of m in

these alloys are well below unity. Based on these four criteria/tests,

the usefulness of the model in explaining the inverse HallePetch

effect in the presently analyzed nanocrystalline intermetallics is

established. Finally, it could be said that at the present level of

understanding explaining optimal superplasticity/IHP effect

amounts to solving a two-constant problem, viz., DF0 and t0 are

obtained from experiments, c.f. the mathematical theory of elas-

ticity, where the shear modulus and Poisson's ratio are obtained

from experiments. However, in the present analysis, it is possible to

predict these two constants of DF0 and t0 ab initio and this aspect

will be considered in a future publication.
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a b s t r a c t

Inverse Hall–Petch effect/grain size softening in quasi- and nanocrystalline materials at ambient/low

temperatures is attributed to mesoscopic (�a grain diameter or more) grain/interphase boundary sliding

controlled flow. Equations for estimating the free energy of activation for the rate controlling process,

the free volume fraction present in a basic sliding unit and the average number of grain boundaries that

align to form a planar interface during superplastic deformation are given in some of our earlier papers.

These predictions are verified here using experimental data pertaining to one quasi- and two

nanocrystalline systems. The agreement between the predictions and the experimental observations is

satisfactory.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In micro-mechanics [1] decreasing grain size has a similar

effect as increasing temperature so far as creep effects in a

material are concerned. Therefore, it is understandable that

creep/superplastic effects are seen at room temperature in a

high-temperature-melting material like palladiumwhen its micro-

structure is nanocrystalline [2]. Koch and Narayan [3] found fault

with most of the experimental results in which inverse Hall–Petch

(IHP) effect was reported because they noted that the samples

used were not defect-free. According to them [3] only four sets of

data demonstrated a genuine grain size softening/IHP effect.

Recently, a grain softening effect in an Al–Cu–Fe based nano-/

quasicrystalline material was reported [4] The experimental

results (Fig. 3 of [4]) seem to suggest that the grain size depen-

dence of hardness in the region in which the grain softening

effect is observed follows IHP relationship, as suggested earlier

[5,6]. Notwithstanding this, the authors have interpreted their

results in terms of a model [7,8] in which the hardness varies as

log(L) or L, where L is the average grain size, depending on the

approximation used.

The present authors [5,6] presented an explanation for the

occurrence of IHP effect by refining a model for mesoscopic grain

boundary sliding (mGBS) controlled flow in microcrystalline

materials [9] to include the nanocrystalline range as well. The

correlation of the flow stress with superplastic strain rates and the

method of knowing the atomistic constants, estimating the free

energy of activation for the rate controlling process, the threshold

stress for the onset of mGBS and the free volume fraction present

in a basic unit of sliding were details presented in later works

[10–15]. In fact, [7,8] appear to have used an earlier paper of ours

[16] extensively, which, like [7,8], deals with grain boundary

sliding (GBS) controlled flow. For example, Eq. (2) of [7] becomes

identical to Eq. (2) of [16] when it is noted that Nv in [7] is

represented as N (the number of sites along the grain boundary at

which atomic jumps take place aided by stress and temperature)

in [16] and (Ab) [7] as γ [16]. (Nv and N are defined somewhat

differently in the two papers, but the physical picture is very

similar.) Post-1990, our model was improved upon significantly by

introducing many microstructural details concerning the general

high-angle boundaries [10–15] because by then the controversies

regarding the structure of general high-angle grain boundaries had

got settled and understanding in terms of the structural unit

model had emerged [17–21].

In brief, in the model the rate controlling processes are

assumed to be confined to the grain/interphase boundary regions.

High-angle boundaries, along which boundary sliding is concen-

trated [22,23], are divided into atomic-scale ensembles that

surround free volume sites present at discrete locations on the

boundary characteristic of misorientation and the nature and

magnitude of inter-atomic forces. Due to the presence of free
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volume, these ensembles possess a lower shear modulus com-

pared with the rest of the boundary and hence constitute the basic

units of sliding. Microscopic sliding caused by localized shear

persists till it is rendered ineffective by steric hindrances like at a

triple junction. For GBS to develop to a mesoscopic scale, two or

more grain boundaries need to align to form a plane interface,

which by further interconnection with other similar plane inter-

faces will lead to large scale sliding till it gets stopped by an

insurmountable barrier like an extra-large grain or a coarse

precipitate. This plane interface formation process, brought about

by dislocation emission from grain boundaries or diffusion, both of

which are regarded as faster than GBS in the model, gives rise to a

long-range threshold shear stress, τo, which has to be overcome for

mGBS to set in. Free energy minimization and the possibility of the

applied stress doing maximum work in this configuration (princi-

ple of maximum work) are the reasons for plane interface forma-

tion. A mathematical analysis that assumes that the basic sliding

unit is of oblate spheroid shape of base diameter ð5aoÞ and height

ð2:5aoÞ, where ao is the inter-atomic distance in the boundary

region (�equal to the atomic diameter) and that the grain shape is

rhombic dodecahedron, leads to Eqs. (1a) and (1b). From bubble

raft experiments, the work of Argon [24] and MD simulations

[20,21], the free volume fraction inside the basic sliding oblate

spheroid is taken in a first order approximation as �0.10 for all

superplastic systems.

_γ ¼ 2Wγo ν

L
sinh

ðτ�τoÞ γo Vo

2 kT

� �

exp �ΔFo
kT

� �

ð1aÞ

ΔFo ¼
1

2
ðβ1 γ2oþβ2 ε

2
oÞ GVo ð1bÞ

In Eqs. (1a) and (1b), _γ is the strain rate, W the average grain

boundary width ð ¼ 2:5aoÞ, γo the free volume fraction present in

the basic unit of sliding present in the grain boundaries, which will

approximately be equal to the shear strain (dependent on the

material; the method of determining it has been given), ν the

thermal vibration frequency (¼ 1013 s�1 or ðkT=hÞ s�1, with h

the Planck constant), τ the applied shear stress, Vo the volume of

the basic sliding unit ð ¼ ð2=3Þ πW3Þ, k the Boltzmann constant,

T the temperature of deformation on the absolute scale, ΔFo the

free energy of activation for the basic sliding event, G the shear

modulus of the basic sliding unit, εo the dilatational strain in a unit

sliding event (ð ¼ γo=
ffiffiffi

3
p

Þ, if von-Mises yield criterion is assumed)

as the oblate spheroid is embedded in a solid matrix,

β1 ¼ 0:944 ð1:59�p=1�p) and β2 ¼ 4ð1þpÞ=9ð1�pÞ. Where p is

Poisson's ratio.

There are no adjustable constants in the analysis. ΔFo, and σo,

the only unknowns, are obtained directly from the experimental

results. (Expressions are available for their theoretical estimation

also-Eq. (1b) above and Eqs. (13) and (14) of [10]). The numerical

procedures used to solve the transcendental Eq. (1a) with a view

to comparing the predictions of the model with experimental

findings are also available [10,11,15].

It is known that if von Mises yield criterion is assumed

τ¼Hv=3
ffiffiffi

3
p

, when Hv, the hardness of the material, is reported

on the Vickers scale. How this relationship gets modified, if other

yield criteria like Mohr–Coulomb are used, has also been

explained [12,13]. Thus, one obtains Eq. (2) [5,6].

HV ¼HVa�
m2

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL�LoÞ
p

ð2Þ

here HV is the measured (steady state) hardness, HVa the hardness

equivalent of the applied stress at the moment of load application,

m2, a constant ð ¼ G
ffiffiffiffiffi

L1
p

=CÞ, with C a conversion factor (from shear

to hardness, τ¼ CHV ; C ¼ 1=3
ffiffiffi

3
p

for von Mises yield criterion),

Lo ð ¼ 2W
ffiffiffi

6
p

Þ the grain size at which τo falls off to zero and L1 is

a convenient notation representing

L1 ¼ 3�0:75 215 N�0:5
PI

γB

Gαf
ð3Þ

with αf a form factor (�1) and γB specific grain boundary energy

and NPI the number of grain boundaries that align to form a plane

interface at a given value of L. (For obtaining numerical values for

NPI using Eq. (2), within a narrow grain size range NPI is treated as

independent of L. But in general NPI is a strong function of grain

size and temperature.) Using isothermal experimental hardness vs.

grain size data reported and Eqs. (2) and (3), not only one can

account for the IHP effect, but also predict the number of grains

that align to form a plane interface.

In this paper the data presented in [4] and in [25,26] are

re-analyzed.

The degree of fit, as determined by coefficient of correlation, for

all the three expressions Hv vs. ln ðLÞ, Hv vs. L and Hv vs. L�0:5 is

very similar—Table 1. On this basis alone it is fair to say that both

our approach [5,6] and that of Conrad and Narayan [7,8] account

for the experimental results satisfactorily. This finding clearly

underlines the dangers in preferring one atomistic mechanism

over another merely based on gross correlations.

With reference to the preference of [4] for the model of Conrad

and Narayan [7,8] the following observations are in order.

(a) Figs. 4 and 5 of [4] suggest that the activation energy for the

rate controlling process gets doubled when the same is deter-

mined by plotting Hv vs. L instead of Hv vs. ln ðLÞ. This observation
is in conflict with the finding [7,8] that very similar activation

energy for the rate controlling process result from both types of

plots. (b) In the earlier analysis [7,8] the effective stress is taken as

� the applied stress, i.e., the strain-rate sensitivity index, m¼1.0.

But, in nanocrystalline materials at room temperature the value of

m is in the range 0.02–0.08 [27,28]. In contrast, in our approach

[5,6,9–15] the value of m can vary from a very low value to 1.0,

depending on the difference between the applied stress and the

threshold stress needed to give rise to mesoscopic boundary

sliding. Our analysis [5,6,9–15] also suggests (a) a method of

calculating the threshold stress, τo (see Eqs. (13) and (14) of [10])

and (b) the strain rate of deformation in terms of the material and

experimental parameters, including the free energy of activation,

ΔFo—Eqs. (1a) and (1b).

In the papers taken up for analysis, the strain rate of the

hardness test is not reported. According to [29] this lies in the

range of 5� 10�2 s�1 �5� 10�4 s�1. (It is not clear from [4]

what value of strain rate was assumed, while determining the

activation energy from their Figs. 4 and 5). By assuming that the

strain rate range reported [29] is relevant for the results of

[4,25,26], a free energy of activation for the rate controlling

Table 1

Degree of fit for the three relations: Hv α ln ðLÞ, Hv α L and Hvα L�0:5 .

System L (nm) H (GPa) Correlation coefficient of H and

lnðLÞ L L
�0.5

Al62.5 Cu2.5 Fe12.5 [4] 38.8 11.41 0.9487 0.9168 0.9623

23.5 10.46

20.6 9.31

17.5 8.56

Zn [25] 11.0 1.06 0.9942 0.9813 0.9979

7.9 0.84

5.9 0.58

Ni 18Fe [26] 13.9 6.15 0.7867 0.8064 0.7767

12.7 5.70

11.0 5.71
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process pertaining to the three sets of results is reported. While

predicting the free volume fraction present in basic sliding unit,

the number of grain boundaries that align to form plane interfaces

and the free energy of activation for the rate controlling process

(Eqs. (1a), (1b)–(3) of this paper) for the two nanocrystalline

materials, the experimental finding [30,31] that when the grain

size is below 15 nm, the shear modulus falls by up to 30% for a

grain size of �5–6 nm is kept in mind. (For the quasi-/nanocrystal-

line material the value of G is given.) The results are summarized

in Table 2.

For the two nanocrystalline materials the shear modulus in the

bulk, as reported by Frost and Ashby [32], was used. Based on the

present analysis one is able to suggest that in the Al-based nano-/

quasicrystalline material the plane interface is made up of 1–2

grain boundaries (¼NPI). The same increases to 18–24 and 8–10

respectively for the Ni–Fe and Zn- nanocrystalline materials. The

likely range of activation energy values ðΔFoÞ and free volume

fractions ðγoÞ in the three cases are also presented in Table 2. The

predictions concerning the values of NPI and γo can be checked by

high-resolution TEM and/or MD simulations by any interested

reader.

As capability for prediction of new results is a desirable feature

of a model, there appears to be a case in favor of the present

analysis.
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Abstract Different mechanisms have been suggested by

many authors as controlling the rate of superplastic flow in

different materials. From the viewpoint of computational

effort and aesthetics, it is highly desirable to explain the

phenomenon, independent of the material/system consid-

ered, on a common basis. With this aim, a mesoscopic grain

boundary sliding-controlled deformation model was pro-

posed sometime ago as being responsible for superplastic

flow in materials of different kinds. In this paper, a rigorous

numerical computational procedure for the experimental

validation of the model, which takes into account all the

physical requirements of the model, is presented. The

soundness of the new procedure is established by analysing

the experimental data pertaining to many systems belonging

to different classes of materials, and matching the results of

the analysis with the experimental findings.

Introduction

The subject of superplasticity has been reviewed exten-

sively. Often, the phenomenon is described by Eq. 1 [1, 2].

_e ¼ a
rn

da
0 exp � Q

kT

� �

ð1Þ

where _e is the strain rate, a and a0 are constants, d is the

average grain size, r is the external stress, n is the stress

exponent (inverse of the strain rate sensitivity index, m), Q is

the activation energy, k is the Boltzmann constant and T is the

absolute temperature of deformation. For significant super-

plastic elongation in tension, m has to satisfy the condition

0:3�m� 1 in a strain rate range _emin � _e� _emax; i.e. there is a

lower and upper bound to the strain rate range of significant

superplasticity. The grain size should be less than *10 lm

for metals and*1 lm or less for ceramics and should remain

relatively stable during deformation. The many ways of

achieving a refined, relatively stable microstructure are well

reviewed [2–5]. Superplasticity appears to be a near-ubiqui-

tous phenomenon observed in many different classes of

materials [6]. Some recent/unconventional examples are

nanostructuredmaterials, earth’s lower mantle, ice having fine

grain size, bulk metallic glasses and carbon nanotubes [7–9].

A model in which grain boundary sliding (GBS) that

develops to a mesoscopic scale (defined to be of the order of a

grain diameter or more) was proposed sometime ago and

developed over a period of time. It has also been validated

approximately using experimental data pertaining to a few

systems and approximate numerical procedures. A detailed

description of the model and the earlier validation procedures

can be found elsewhere [6, 10–18]. A brief report on an

improved algorithm (and computer code) for validating the

modelwas presented recently at a conference [19]. In this paper,

a detailed description of the new method is provided and the

results of the present analysis are compared with the earlier

findings. The predictions of the analysis are validated using

experimental results pertaining to several alloys and material

classes.

Creep-based approach

A constitutive equation often used to analyse high-tem-

perature creep is represented as Eqs. 2a or 2b [20].
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_e ¼ A
DGb

kT

b

d

� �p
r

G

� �n

ð2aÞ

_e ¼ A
DGb

kT

b

d

� �p
r� ro

G

� �n

ð2bÞ

where A and p are empirical constants, D is the appropriate

diffusivity (lattice, grain boundary or mixed/effective,

given as D ¼ Do expð�Q=kTÞ, where D0 is the pre-expo-

nential (frequency) factor, Q is the activation energy for the

rate-controlling process), G is the shear modulus at the test

temperature, b is the Burgers vector and d is the average

grain size. Eqs. 2a, 2b have been assumed, without proof to

be relevant to superplasticity also. As ln _e� ln r plots over

a wide range are not linear, at times a threshold stress, r0
[21], considered to be necessary for the onset of super-

plasticity is included (Eq. 2b). Using Eqs. 2a, 2b, different

rate-controlling mechanisms have been suggested for dif-

ferent materials and no unification of the interpretations has

been attempted.

In the present manuscript, we develop a rigorous com-

putational procedure for analysing superplasticity data in

the context of the mesoscopic GBS model. We apply this

analysis to previously reported measurements in a wide

variety of materials systems. The results show very similar

values for the threshold stress and the free energy of acti-

vation for materials of similar composition and are con-

sistent with the notion that a unique rate-controlling

mechanism underpins superplastic flow in materials of all

classes and grain size ranges.

Mesoscopic GBS-controlled model for superplastic

deformation [6, 10–18]

In this model, a high-angle grain boundary is divided into a

number of atomic scale ensembles that surround free vol-

ume sites present at discrete locations, which depend on the

boundary misorientation, material composition (which in

turn, determines the nature and magnitude of inter-atomic

forces and electronic interactions) and experimental con-

ditions. Due to the presence of free volume, which depends

on the variables listed above, these ensembles possess a

lower shear modulus than the rest of the boundary and

constitute the basic units of sliding. The shape of the basic

sliding unit is assumed to be an oblate spheroid (see

Fig. 1a), on average of length equal to 5 atomic diameters

in the boundary plane and height 2.5 atomic diameters

(equal to the average grain boundary width, as revealed by

many field ion microscopic studies) in the perpendicular

direction. (This shape is chosen for mathematical devel-

opment, as a uniform stress–strain field that develops inside

a deformed oblate spheroid is already worked out [22]. The

real shape could even be irregular and this is taken into

account by introducing a form factor of the order of unity

[10]). It is assumed that the rate-controlling process is

confined within the grain boundary region (Fig. 1b, c).

Atomic scale sliding persists till it is rendered ineffective

by steric hindrance, e.g. a triple junction (Fig. 1d). For

GBS to develop to a mesoscopic scale, two or more grains

need to align to form a plane interface (Fig. 1e).

Further interconnection of similar plane interfaces can

lead to long-range sliding till it gets stopped by an insur-

mountable barrier, e.g. a very large grain or a big precipitate.

Thus this model views GBS as a two-scale process, where

deformation at a boundary (atomic/microscopic scale)

develops to a mesoscopic scale in the second stage. The

driving force for plane interface formation is the minimi-

zation of the total free energy of the deforming system and

the work done by the external stress reaching its maximum

value for this configuration (Taylor’s principle of maximum

work). It is easy to show that the extension of the boundary

EA in Fig. 1d downwards to EB will lead to a decrease in

the total free energy of the deforming system. In the limit,

the triple junction will be transformed into a horizontal line,

i.e. a plane interface [14]. These processes give rise to a

long-range threshold stress which has to be overcome for

mesoscopic GBS to set in. Equation 3 represents the math-

ematical form of the mesoscopic GBS-controlled model for

superplastic deformation, which is suggested to be relevant

for understanding the superplastic behaviour of materials of

all kinds and having grain size in the lm, sub-lm or nm

range [10, 14, 19]:

_e ¼ 2cWcom

d
sinh

r� roð ÞccoVo

2kT

� �

exp �DFo

kT

� �

ð3Þ

where, Vo ¼ 2
3
pW3;m ¼ kT

h
or 1013 s-1; W = 2.5a0; DF0 is

the free energy of activation for the basic sliding event,1 c0
is the shear strain produced in a unit sliding event, V0 is the

volume of the basic sliding unit (an oblate spheroid), W is

the grain boundary width, a0 is the atomic diameter, m is the

thermal vibration frequency, (¼ kT=h or 1013 s-1), h is the

Planck constant, c is a yield criterion-dependent constant

and r0 is the threshold stress necessary for the onset of

mesoscopic boundary sliding. The threshold shear stress in

case of the present systems studied, in all of which the

1 DF0 is the sum of Etrans, the change in the internal energy when the

oblate spheroid gets sheared in the absence of the surrounding matrix,

Eel, the elastic strain energy of the deformed oblate spheroid and Eint,

the interaction energy of the elastic field. It is assumed that the

constrained shear transformation (inside the solid matrix) occurs

without any heat flow. DF0 can be interpreted equivalently as the

enthalpy change of the deformed oblate spheroid, the enthalpy change

of the deformed oblate spheroid plus matrix or the change of internal

energy of the deformed oblate spheroid, matrix and loading mech-

anism regarded as a simple thermodynamic system. (Read ‘Helmholtz

free energy’ for ‘internal energy’ and ‘Gibbs free energy’ for

‘enthalpy’ [22]).
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average grain size is much greater than *10–15 nm, is

given by Eq. 3 [14]:

so ¼
8GCBr

30:25

� �0:25
1

d
ð4Þ

where, CB is the specific grain boundary energy and r is the

residual misfit which is removed by diffusion (an accom-

modating process faster than GBS). From Eq. 4 it is seen

that at a given grain size, s0 decreases with increasing

temperature (G decreases with increasing T) and at a fixed

temperature it increases with decreasing grain size (due to

more number of grain boundaries aligning themselves to

form the plane interface on decreasing the grain size).

The free energy of activation for the rate-controlling

process is computed using Eq. 5 [22].

DFo ¼
1

2
b1c

2
o þ b2e

2
o

� �

GVo ð5Þ

where eo is the unit dilatation strain, derived from the value

of the unit shear strain as ð¼ co � cÞ, b1 and b2 are con-

stants appropriate to the oblate spheroid shape and are

given by b1 ¼ 0:944 1:59�p

1�p

� �

; b2 ¼ 4
9

1þp

1�p

� �

, where p is

Poisson’s ratio.

New algorithm and computer code

Figure 2 presents a new algorithm developed for validating

the mesoscopic GBS-controlled flow model for superplas-

ticity. The inputs for the algorithm are the experimentally

generated data of stress and strain rate at different tem-

peratures and grain sizes for the different systems, as

reported in the literature. The atomic diameter and the

shear modulus at different temperatures are also taken from

literature. The tolerences for the computed values have

been prescribed keeping the maximum experimental

accuracies in mind.

The variations in the magnitude of the unit shear strain

produced in a boundary sliding event and the threshold

stress necessary for the onset of mesoscopic boundary

sliding, as a function of grain size and temperature or

temperature, as the case may be, should be consistent with

the requirements of the physical model. Data points rele-

vant to optimal superplastic flow (regions I and IIa [2],

where m increases with increasing strain rate) were digi-

tized manually.

The computational procedure consists of two stages. In

the first stage the value of the free energy of activation and

the corresponding threshold stress are computed assuming

Fig. 1 a Sliding/Shear unit,

according to the GBS Model

[6], b & c shaded grain

boundaries of rhombic

dodecahedral and tetrakai

decahedral grains within which

the rate-controlling process is

confined [10], d shear stress-

driven movement of a boundary

triple junction to lower the

overall free energy of the

system, e: resulting planar

interfaces (along XY, X’Y’,

X’’Y’’, etc.), which result when

the atoms located in the shaded

regions are moved by the

extension of the boundaries

normal to the shear direction to

reach the sliding boundary

planes [14]
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the value of the average unit shear strain, c0, to be *0.10

(based on bubble raft experiments and MD simulations [23,

24]). In the next stage, the computed value of the free

energy of activation is matched with the prediciton of Eq. 5

and the value of the unit shear strain is so adjusted that they

agree. As shown in the algorithm (Fig. 2), this is done

iteratively till a consistent value of the unit shear strain is

obtained, which satisfies all the equations simultaneously.

The predictions of the analysis were matched with the

experimental results with the standard deviation (SD),

average error (AE) and correlation coefficient (CC) as the

criteria, Eq. 6.

SD ¼
P

_eexpt � _epred
� �2

N � 2

 !0:5

; AE ¼ SD
ffiffiffiffi

N
p ;

cc ¼
P

_eexpt _epred
� �

� N _em expt _em pred

P

_e2expt � N _e2m expt

� �

P

_e2pred � N _e2m pred

� �

0

@

1

A

0:5

ð6Þ

Here _epred, _eexpt are the predicted and experimental strain

rate values, respectively, _em pred, _em expt are the mean of the

experimental and predicted strain rate values and N is the

number of experimental stress–strain rate pairs taken at

each temperature for the analysis.

The algorithm presented in Fig. 2 works as follows. The

initial value of c0 is taken as 0.10. r0 is assigned values

starting from d to rmin � dð Þ, with d ¼ 0:001rmin, where

rmin is the minimum stress applied at the given temperature

for which an experimental datum point is available. At

each temperature, in Eq. 3 using the mean of the experi-

mental values of the stress and the corresponding strain

rate, DF0 for each of the r0 values is computed. At all

temperatures, those combinations of DF0-r0 which fell

within a prescribed error range (chosen based on the

experimental accuracies) were accepted and those DF0

values, which together for all the test temperatures

employed for the particular material formed the closest

numerical set, and the corresponding r0 values were

Fig. 2 Flow chart describing

the algorithm. DF0 free energy

of activation, c0 unit shear

strain, V0 volume of the basic

sliding unit, W grain boundary

width, a0 atomic diameter, m

thermal vibration frequency,

k Boltzmann constant, c yield

criterion-dependent constant, r0
threshold stress, e9 strain rate,

d grain size, r external stress,

G shear modulus at temperature

T and b1 and b2 constants

defined below Eq. 5
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chosen. DF0 value so chosen at each temperature was used,

along with Eq. 5, to refine the value of c0 iteratively till a

near-stable value, which satisfies Eqs. 3 and 5 simulta-

neously is obtained. Evidently, this method is an

improvement on the earlier validation procedures [14–17].

As a single mechanism is assumed to operate in the

entire experimental region of interest, the free energy of

activation should be independent of temperature for each

system.

Systems analysed

Table 1 presents the details of the systems analysed by

different authors and a summary of the results thus

obtained. 4 magnesium-based alloys, 2 each of zinc-, alu-

minium- and copper-based alloys, a silicon nitride and 3

each of zirconia and alumina–zirconia–mullite are the

materials of interest. Superplastic intermetallic alloy sys-

tems are considered separately in Appendix A, because one

more author was involved in that work.

Earlier analyses

In this section the ideas on the threshold stress, constitutive

equation, the free energy of activation and the rate-con-

trolling mechanism for the different materials, as reported

by the different authors, are summarized.

In papers dealing with Mg1, Cu1-2 and Zr1-2 systems

the threshold stress is considered to be absent/neglected.

But, the authors of Mg2 and Ac2 believe that superplastic

flow is accompanied by a threshold stress. In Al1, which

uses a variant of Eq. 2a, G is replaced by the elastic

modulus E. The authors of papers dealing with Mg3, Mg4,

Zr1-3, Ac1-3 and Si1 use Eq. 1. The paper dealing with

Mg4 makes a mention of the threshold stress, but has not

included it in any rate equation.

The investigators of the zinc-based and the copper-based

systems have not reported any activation energy for the

rate-controlling process. In some cases (Zr3, Ac1) the

activation energies are reported at different stress levels.

But, in Table 1, for clarity, only the values for the lowest

and the highest stress levels are given. When Eq. 1 is used

Table 1 Details of the systems analysed

Taga System composition Test temperatures (K) Initial grain

size (lm)

Reported values of

m (range) Q (kJ mol-1)

Magnesium-based alloys�

Mg1 Mg 6.19Zn 1.1Y 0.46Y [25] 673, 698, 723 5.2 0.20–0.75 92

Mg2 Mg 4Y 0.4Nd 0.7ZrO2 [26] 598, 623, 648, 673 2 126

Mg3 Mg 5.8Zn 1Y 0.48Zr [27] 673, 723, 753 *15–20 76, 213

Mg4 Mg 3Zn 0.5 Y 1.5 Zr [28] 648, 673, 698, 723 5 107.8, 146.3

Zinc-based alloys�

Zn1 Zn 22Al [29] 398, 453, 518, 545 0.9 0.35–0.50 Unreported

Zn2 Zn 22Al [30] 423, 473, 503 2.5

Quasi-single phase copper alloys�

Cu1 Cu 2.8Al 1.8Si 0.4Co [31] 723, 773, 823, 873 7 0.20–0.38 Unreported

Cu2 Cu 2.8Al 1.8Si 0.4Co [31] 673, 723, 773, 823 3

Aluminium-based alloys�

Al1 Al 8.9Zn 2 Mg 0.09Sc [32] 493, 523, 563, 583, 603 0.68 0.05–0.55 142

Al2 Al 3 Mg 0.2Sc [33] 573, 623, 673 723 0.2 120, 90

Zirconia-based ceramics/composites�

Zr1 ZrO2 3Y2O3 [34] 1523, 1573, 1623, 1673, 1723 0.51 0.45–0.58 533

Zr2 ZrO2 4Y2O3 [34] 0.75

Zr3 ZrO2 8Y2O3 10Al2O3 [35] 1573, 1623, 1673, 1723 1.1 597, 683

Alumina-based ceramics/composites#

Ac1 Al2O3 20Zr2O3 30Al16 Si2O13[36] 1673, 1723, 1773 0.39 0.33–0.58 911, 840

Ac2 Al2O3 20Zr2O3 30Al16 Si2O13 [37] 0.4 870

Ac3 Al2O3 25 NiAl2O4 25 3Y2O3 Zr2O3 [38] 1623, 1648, 1673, 1698, 1723 1.3 377, 368

Silicon nitride ceramic

Si1 Si3N4 [39] 1723, 1773, 1823, 1873 0.068 0.5 to *1 574.8, 852.8

a The ‘Tag’ from this point onward, refers to the system designation in the form given here. The compositions are weight, volume or mole

percentage, as shown by the superscripts �, � and #, respectively
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to describe the flow, the activation energy can be calculated

from the slope of an Arrhenius plot at a constant stress or

constant strain rate [40]. In the papers dealing with Mg3,

Zr1-3, Ac1-3 and Si1 the activation energy at constant

stress is reported using Eq. 7. In case of Mg4 the activation

energy at constant strain rate is estimated based on Eq. 8.

Both these are ‘apparent’ values. (Their interrelationship

DFo; r ¼ nDFo; _e was established quite a while ago [40]).

Qr ¼ �R
o ln _e

o 1=Tð Þ

� �

r

ð7Þ

Q _e ¼ nR
o ln _e

o 1=Tð Þ

� �

_e

ð8Þ

Table 1 reveals significant differences in the values of

the activation energy even for very similar alloys. As a

result, different rate-controlling mechanisms have been

suggested. More importantly in none of these papers the

model for the rate-controlling mechanism has been derived

in detail. They are decided based mostly on the values of n

and Q and a guess about the magnitude of the activation

energy for diffusion (no diffusion measurements were

made). The value of the activation energy being vastly

different for systems of very similar composition is

sometimes due to incorrect handling of the rate equation.

A standard protocol to handle the rate equation is missing.

The picture is confusing also because diffusion data for

complex alloys, ceramics and composites are not available

and many superplastic alloys fall in these categories.

Details of the analysis

The material properties required for the current analysis are

the atomic diameter, a0; the shear modulus, G; Cd, the

coefficient of variation of the shear modulus with T;

Poisson’s ratio p and the melting temperature Tm. All these

values are available in standard literature. In cases where a

single element constituted more than 90 % of the material,

the properties used for the analysis corresponded to those

of the major element. For some systems, where the other

elements were present in greater amounts, the values of G,

p and Tm could be taken from existing literature. But, in

case of systems Ac1-3, which are multiphase composites,

the value of G was obtained by the rule of mixtures, p and

Tm were taken to be approximately equal to those of the

principal component (as these values were not available for

each constituent). Following Frost and Ashby [41], Cd and

the atomic diameter for all the systems were chosen as

those of the corresponding major constituent.

For zirconia-based systems and when the system prop-

erties were approximated by those of the principal con-

stituent, the values of G, p, Tm and Cd were taken from

[42]; for the system Mg4 the grain size was obtained from

the author through personal correspondence; for the

3-phase ceramic/ceramic composite systems, p, Tm and Cd

were taken from [43, 44] and for the silicon nitride ceramic

system, G, p, Tm and Cd were obtained from [45, 46]. The

atomic diameters for all the systems were taken from [42].

Results

A total of 33 systems were analysed using the improved

algorithm described here. The grain sizes of these systems

vary over a wide range: nano, sub-micron and micron

ranges; different classes of materials involved: metallic

(quasi-single phase and microduplex), ceramic, ceramic

composite and material with a quasi-crystalline phase and

(in Appendix A) intermetallics were analysed. Zr3, Ac1-3

and Si1 were tested in compression and the rest in tension.

In Appendix A, the results of the intermetallics, as

analysed earlier as also using the current algorithm, are

presented. With the improved algorithm, the predictions

are better and also the algorithm is statistically more

correct.

The origin of Region I in the sigmoidal log r� log _e plot

of superplastic flow is attributed at times to dynamic grain

growth. In our opinion, such a significant decrease in the

value of m in region I cannot arise from this term alone. In

fact, the sigmoidal plots are made soon after the steady-

state conditions are reached during superplastic flow. In

near-isotropic alloys, in which category many, if not most,

superplastic materials fall, such a steady state is reached

after\10–20 % elongation [47]. It is highly unlikely that

the grain size would have increased so significantly to

reduce the ‘m’ value drastically within such a short strain

interval. Hence our present case is in favour of the presence

of a threshold stress for the onset of superplastic defor-

mation. In addition, d in Eq. 3 should correspond to the

strain at which the log r� log _e plot is generated. For the

same strain, this grain size would be different for each of

the test temperatures. These values are not reported for any

of the systems. Therefore, in all cases the starting grain size

was taken as equal to d. This is an approximation. The

present analysis has been carried out within these

restrictions.

It is seen that the mesoscopic GBS-controlled flow model

could predict the strain rates very well for all classes of

materials of grain sizes in the different ranges mentioned.

The maximum value of tolerance (defined as the larger of

the _eexperimental= _epredicted
� �

and _epredicted= _eexperimental

� �

ratios)

required was*6.3 for Zn1. The best prediction was for Zc3,

with the minimum and maximum tolerances being *1.02

and *1.08, respectively. The maximum and minimum
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values of the coefficient of correlation among all the systems

were 0.9998 and 0.8897, respectively.

Table 2 presents the results comparing the predictions

for a few systems of similar compositions. DFo; diff is the

difference between the maximum and the minimum values

of the free energy of activation for all the similar systems

put together. ccco is the coefficient of correlation for c0
values for all the systems and T values. From Table 2 it is

clear that the variation in the value of the free energy of

activation is below 42 kJ mol-1, the commonly found

scatter in the activation energy reported in the literature

among the best estimates of that parameter. Therefore, the

presently observed minor variation is attributed to experi-

mental scatter and the small compositional differences

present in the alloys tested [48].

Refined values of c0 for some of the similar systems were

comparable. From Table 2 it is seen that the correlation

coefficient for c0 for the Zn 1–2 systems is the highest. This

is because both the systems were of the same composition.

Similarly when two out of the four magnesium-based sys-

tems, Mg1 and Mg4, were compared, the correlation coef-

ficient was high. However, when the other magnesium

systems (of different compositions) were also considered

together, the correlation coefficient decreased. Hence it is

clear that c0 values for similar systems are of similar

magnitudes and they also vary similarly as a function of the

experimental conditions and as required by theory (i.e. it

increases with increasing T). The correlation coefficients

for the other similar systems are also shown in Table 2. The

correlation coefficient for Ac1-2 systems is relatively low,

but the tolerances and the match between the experimental

and the calculated strain rates were very good.

In Table 2 the maximum values of the tolerance, standard

deviation, average error and the minimum value of the cor-

relation coefficient obtained are displayed. These statistical

parameters clearly demonstrate that cutting across material

class and grain size range the accuracy of predictions of the

mesoscopic GBS-controlled flow model is very good.

Table 2 Statistical analysis of the results for similar systems

Systems DFo; diff kJ mol-1 ccco Maximum Minimum CC

Tolerance SD AE

Zn1 and Zn2 20 0.9776 6.3069 0.1048 0.0349 0.9176

Zr1, Zr2 and Zr3 39 0.9137 2.4312 0.0266 0.0109 0.9231

Mg1 and Mg4 21 0.9781 2.7596 0.0537 0.0240 0.9354

Ac1 and Ac2 36 0.6667 1.8876 0.0298 0.0111 0.9665

Table 3 Results in detail

System T (K) DFo, (KJ mol-1) co ro (MPa) Maximum Tol SD AE CC

Zr1 1523 379 0.0959 12.91 1.2997 0.0022 0.0008 0.9859

1573 374 0.0964 12.90 1.3198 0.0044 0.0017 0.9871

1623 378 0.0981 8.24 1.3898 0.0065 0.0027 0.9908

1673 376 0.0991 7.97 1.3300 0.0098 0.0040 0.9914

1723 390 0.1023 2.40 2.0899 0.0106 0.0035 0.9675

Ac1 1673 381 0.0887 14.48 1.1237 0.0032 0.0016 0.9972

1723 364 0.0892 14.34 1.1697 0.0126 0.0063 0.9945

1773 353 0.0908 12.48 1.0906 0.0222 0.0111 0.9960

Cu1 723 160 0.0996 27.59 1.1667 0.0021 0.0011 0.9785

773 166 0.1016 15.94 1.4182 0.0037 0.0017 0.9560

823 171 0.1033 10.18 1.5375 0.0049 0.0020 0.9705

873 176 0.1046 7.53 2.4491 0.0114 0.0040 0.9444

Si1 1723 450 0.1285 12.43 1.1880 0.0027 0.0010 0.9936

1773 445 0.1287 8.32 1.2612 0.0065 0.0026 0.9981

1823 444 0.1287 3.72 1.2612 0.0059 0.0024 0.9967

1873 440 0.1289 3.24 1.1418 0.0058 0.0026 0.9984
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It is seen that some data for similar systems fit to better

tolerances than some others. Experimental data for a large

number of similar systems need to be analysed and more

accurate values for c0 and r0 need to be obtained for these

system-dependent physical constants to be used as standard

values for very accurate strain rate predictions in com-

mercial software packages.

Table 3 presents the results in detail for some of the

systems. Stress versus the predicted and experimental

strain rates for these systems are presented in Fig. 3. The

experimental points are represented by symbols; each

symbol is associated with a particular temperature. The

predicted values appear as full lines (a least squares fit was

used for getting the model constants and predicting the

strain rates). The insets of these plots reveal the small

scatter in the values of free energy of activation as a

function of the test temperature.

For the systems presented in Table 3, as expected from

theory, c0 increased with increasing test temperature in all

systems. The value of c0 strongly depends on the value of

the shear modulus. Hence with more detailed experi-

mentation/theoretical development in the estimation of G

and availability of more accurate G values, highly reliable

material and temperature-specific sets of c0 values may be

generated for future use.

According to theory, r0 should decrease with increasing

T. This is verified in all but one case. To identify the rea-

sons for this exception (which could be due to experimental

scatter or some unknown reason), a more detailed study of

the behaviour of r0 is presently underway.

The atomic diameter used here for calculations corre-

sponds to those of the principal constituent of each alloy.

This will not matter much because the atomic diameter is a

very small quantity. Many previous calculations have

Fig. 3 a–d Predicted and experimental strain rates versus stress plots on a log–log scale for the systems discussed in Table 3
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shown that small changes in this value do not affect the

predictions significantly.

In this model, a fundamental sliding event involves a

cluster of atoms which has free volume present in it. This is

responsible for the shear yield stress in this basic sliding

unit being less than that in the rest of the grain boundary

and the resulting unit shear. Such a line of argument would

suggest that the shear modulus should decrease with

decreasing grain size and this effect should become

prominent in the nm—grain size range, where the grain

boundary to grain interior area ratio is high. Experimental

support for this statement is available [49]. These authors

have shown experimentally that when the grain size of

nanocrystalline Pd falls below about 20 nm the shear

modulus decreases by about 30 % compared with that for

the bulk. Presently ab initio calculations are underway to

determine the shear modulus of the oblate spheroid as a

function of the free volume ratio.

Another point of interest is Eq. 5 which suggests that as

the oblate spheroid is embedded in a solid matrix, the free

energy of activation would be affected by the hydrostatic

component of the stress system. Then it would be more

appropriate to use a hydrostatic pressure-dependent yield

criterion e.g. Mohr–Coulomb, than von Mises or Tresca

yield criterion. This is done in Table 4 in which the com-

puted values of the free energy of activation, the threshold

stress and the ratio of the experimental and calculated

strain rates (tolerance) are compared. In this Table the

values of the free energy of activation, the threshold stress

and the tolerance for each system, when the yield criterion

used is changed from von Mises to either Tresca or Mohr

Coulumb are presented. As the values of the free energy of

activation were least sensitive to the yield criterion, the

values of DF0, r0 and Tol for all the systems at that tem-

perature where DF0 changed the most on changing the

yield criterion are presented in Table 4. It is clear that the

differences in the free energy of activation are rather small

and the yield criterion chosen does not also appear to affect

the accuracy of prediction of the strain rate significantly.

However, the threshold stress seems to be influenced

strongly by the yield criterion chosen. A statistical analysis

for understanding the behaviour of the threshold stress is

presently underway.

Conclusions

The predictions based on the mesoscopic GBS-controlled

flow model for superplastic deformation are well within

order of magnitude accuracy with respect to the experi-

mental results concerning all the systems studied. The

systems taken up for investigation included pseudo-single

phase and microduplex metallic alloys, ceramic and cera-

mic composite systems and alloys containing quasi-crys-

talline particles and intermetallics. Tensile as well as

compressive stress–strain rate datasets were used to

Table 4 Maximum changes in DFo, ro and Tol when the yield criterion is changed

Tag T Von Mises Tresca Mohr–Coulomb

DFo ro Tol DFo ro Tol DFo ro Tol

Mg1 723 126 1.21 1.23 124 1.21 1.23 124 1.21 1.23

Mg2 648 132 0.42 2.76 130 0.42 2.76 130 0.42 2.76

Mg3 753 132 0.89 1.40 131 0.89 1.40 131 0.89 1.40

Mg4 648 129 2.02 3.28 127 2.02 3.28 127 2.02 3.42

Zn1 545 102 2.91 1.55 100 3.54 1.50 101 3.54 1.50

Zn2 423 84 26.94 4.71 83 27.05 5.00 83 26.00 6.06

Cu1 873 175 7.53 2.45 173 7.53 2.45 174 7.31 2.56

Cu2 823 162 9.49 8.59 160 9.49 8.59 161 8.84 10.3

Al1 563 103 13.92 2.54 101 13.83 2.55 102 13.72 2.56

Al2 723 130 3.16 3.16 128 3.16 2.00 128 3.16 2.00

Zr1 1723 390 2.40 2.09 387 2.40 2.09 386 2.40 2.09

Zr2 1523 386 3.45 2.13 366 3.84 8.27 383 3.37 2.11

Zr3 1723 351 3.00 1.45 348 2.80 1.46 348 2.79 1.46

Ac1 1673 381 14.48 1.13 372 17.54 1.73 378 13.73 1.13

Ac2 1773 362 1.84 1.84 358 1.84 1.84 358 4.59 1.85

Ac3 1723 371 4.10 1.04 367 4.11 1.04 367 4.11 1.04

Si1 1723 450 12.43 1.19 446 12.43 1.19 446 12.43 1.19

The units are T, K; DFo, kJ mol-1, ro, MPa
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validate the analysis. The grain size range covered by these

materials was also wide: micron, sub-micron and nano-

crystalline. Activation energies for similar systems are

close and the system- and temperature-dependent values of

the unit shear strain, which according to theory should

increase in magnitude with increasing temperature, obey

that prediction. The applicability of this model to many

classes of materials studied over a wide grain size range

makes this model attractive from physical, computational

and aesthetic points of view.

Acknowledgement N.B. The computer programme used to carry

out the present analysis can be obtained on request for use, on con-

dition that the source should be acknowledged whenever use is made.

Appendix A: Application to intermetallics, dispersion

strengthened alloys and composites

(This section was completed in collaboration with M. Ra-

viathul Basaria).

Table 5 presents the results obtained by the procedure

outlined in the main paper. Systems 1–4 were studied in

[14, 15], systems 5–9 in [16] and the rest in [17]. As before,

the required material properties were extracted from [41,

42, 48]. For comparison, the values obtained earlier are

also included in Table 5. The measure of prediction

accuracy was defined, as before, as the larger value

between _eexperimental= _epredicted
� �

and _epredicted= _eexperimental

� �

ratios (Tol).

In this case also, in accordance with theory, the value of c0
for a given system increases with increasing temperature. In

the earlier numerical validation procedures, c0 was assumed

(as an approximation) to be independent of temperature and

system. A few more points are also worthy of note: for sys-

tems 1–4 the accuracy of predictions has improved with the

present algorithm. For systems 3 and 4 of similar composi-

tion, in each paper the grain size and temperature are dif-

ferent. In these cases the values of DF0 and c0 at the common

temperature of 1723 K are found to agree very well, which

demonstrates the robustness of the present algorithm. For the

rest of the systems, it is noted that in the earlier method [16,

17] DF0 value was calculated at each temperature for each

datum point and then a mean value was obtained which gave

rise to very accurate predictions. But that method did not use

the method of least squares, as done here, which makes the

statistics used here more formal/correct.

The correlation coefficient for the relation between c0
and T for the Ti–Al systems (systems 7–9) is 0.9983;

similarly for the aluminium-based systems 10–12, of sim-

ilar composition, a correlation coefficient of 0.9159 is

obtained. System 13 is omitted from this correlation

although it is also an Al alloy because of its considerably

different composition.

See Table 5.

Table 5 Details and the results of the intermetallic and other systems analysed

Sl. No Composition and L, lm T (K) DFo (kJ mol-1) ro (MPa) Tol co; refined

Old New Old New Old New

1 Al 33.6Cu 0.44Zr, 7.6 [50] 713 141.5 146 0.90 1.44 1.7 1.10 0.1268

753 149 0.70 0.67 1.3 1.10 0.1302

793 149 0.50 0.46 1.2 1.24 0.1324

2 Al 13Si, 18 [51] 791 135.0 137 0.34 0.56 2.9 1.58 0.1269

811 141 0.32 0.51 2.1 1.59 0.1290

831 143 0.30 0.51 2.3 2.06 0.1309

3 ZrO2 3Y2O3 (mol%), 0.41 [52] 1623 393.0 388 2.94 3.09 16.9 9.74 0.0996

1673 384 2.92 2.94 17.1 8.09 0.1009

1723 404 2.90 2.94 9.7 8.37 0.1054

4 �ZrO2 3Y2O3 (mol%) [52] 1723 393.0 404 2.94 3.09 9.7 4.88 0.1072

403 2.92 2.94 6.4 8.70 0.1054

418 2.90 2.94 10.6 9.75 0.1054

5 Co3Ti, 24 [53] 1173 219.3 221 16.9 5.74 1.1 1.76 0.1288

1223 219.0 225 10.3 2.64 1.2 1.83 0.1340

1273 218.7 229 9.70 2.01 1.1 1.89 0.1397

6 Ni3Si, 15 [54] 1323 176.6 226 14.33 12.36 1.1 1.19 0.1482

1353 176.3 221 8.10 7.58 1.42 0.1499

1373 175.3 224 1.02 0.83 1.35 0.1532
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Table 5 continued

Sl. No Composition and L, lm T (K) DFo (kJ mol-1) ro (MPa) Tol co; refined

Old New Old New Old New

7 Ti 46.8Al (at.%), 0.8 [55] 1073 242.2 262 18.1 39.63 1.1 2.03 0.1131

1123 242.8 271 9.0 17.26 2.06 0.1179

1173 245.3 277 8.9 9.49 1.45 0.1222

8 Ti 47Al (at.%), 5 [56] 1273 247.7 282 11.8 20.84 1.3 1.63 0.1305

1323 286 6.01 9.79 1.2 1.55 0.1353

1373 292 5.72 5.29 1.3 1.86 0.1413

9 Ti 48Al (at.%), 0.9 [57] 1163 240.3 280 34.0 17.21 1.2 1.03 0.1222

1273 240.6 285 8.60 6.75 1.2 1.17 0.1312

1373 240.3 290 4.60 3.72 1.1 1.13 0.1409

10 Al 5 Mg, 24 [58] 748 151.78 129 1.95 23.51 1.07 1.39 0.0719

773 132 0.90 15.59 1.07 1.31 0.0734

793 134 0.71 11.95 1.09 1.25 0.0745

11 Al 5.76 Mg, *1.2 [59] 523 113.57 105 – 30.50 – 1.22 0.0602

573 107 19.3 12.94 1.14 1.50 0.0616

623 104 14.5 12.93 1.23 2.11 0.6200

673 106 9.95 9.55 1.23 1.83 0.0633

723 105 – 9.44 – 1.60 0.0644

12 Al–5.76 Mg, 3 [60] 723 150.65 123 22.5 4.21 1.19 2.04 0.0694

748 125 19.5 3.37 1.17 2.80 0.0707

793 127 13.3 2.07 1.16 5.84 0.0721

13 Al 17Si 2Fe 2 Mg, 1.4 [61] 763 139.61 124 – 13.80 – 4.57 0.1039

783 125 6.50 7.55 1.15 3.33 0.1049

793 124 3.70 4.92 1.16 4.37 0.1050

803 129 2.20 1.72 1.19 7.75 0.1077

14 Mg 6Zn 0.8Zr, 0.65 [62] 473 116.99 95 10.8 11.54 1.16 3.95 0.0998

498 98 8.40 8.65 1.15 3.87 0.1017

523 99 6.30 6.27 1.14 5.86 0.1033

15 6 061/20 %SiC, *2.6 [63] 823 150.60 – 5.15 – 1.09 – –

843 128 2.36 6.08 1.05 2.13 0.1219

863 129 1.22 1.78 1.10 2.64 0.1221

883 124 – 0.75 – 2.74 0.1235

16 7075/20 %SiC, 1.75 [64] 753 134.07 118 10.1 9.56 1.09 2.19 0.1129

773 118 6.58 6.46 1.03 1.98 0.1139

793 116 4.94 4.46 1.04 2.74 0.1141

*For system 4, the grain size was the variable; at a constant temperature of 1723 K experiments were conducted with grain sizes of 0.41, 0.66 and

1.20 lm, respectively
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Abstract.  Structural superplasticity is observed in materials of different classes with µm–, sub–
µm– or nm– grain size.  In all cases mesoscopic grain/interphase boundary sliding (~ grain diameter 
or more) is suggested to be the rate controlling mechanism [1–3].  Sub–µm grained metallic [4–6] 
and ceramic [7] systems are analyzed here and good agreement with experimental results is 
established.  Compared with earlier works [3, 8–11], the numerical procedure is more robust, fully 
automated andthe free energy of activation for the rate controlling process is matched with the value 
for the same obtained using Eshelby’s equation [12], which was not done earlier. 

 

Introduction 

Structural superplasticity is reported at high homologous temperatures (>~ 0.4 Tm, where Tm 
is the absolute melting temperature; the limit is lower for nanostructured materials).  We have 
published several papers wherein grain boundary sliding (GBS), which develops to a mesoscopic 
scale (defined to be of the order of a grain diameter or more), is suggested to be the rate controlling 
process in regions I and II of superplastic deformation (till thepoint of inflection in the log stress- 
log strain rate curve) [1-3, 8–11, 13].  In this paper, as an additional step, the free energy of 
activation for the rate controlling process based on the model presented in [2] is matched with the 
value calculated by Eshelby’s approach [12].  A robust and statistically correct numerical analysis 
for the validation of the model using data pertaining to sub–µm grained metallic [4–6] and ceramic 
[7] systems is presented.  Good agreement with the experimental results is demonstrated. 

 

The Model 

A detailed description of the model, in which GBS is the rate controlling process, can be 
found in [2, 3, 14].  GBS is viewed as a two–scale process where deformation at a boundary 
(microscopic scale) develops to a mesoscopic scale (of the order of a grain diameter or more).  A 
high–angle grain boundary is divided into a number of atomic scale ensembles that surround free 
volume sites present at discrete locations characteristic of the boundary.  Due to the presence of free 
volume, these ensembles possess a lower shear modulus compared with the rest of the boundary and 
hence constitute the basic units of sliding.  For mathematical development, the basic sliding unit is 
assumed to be an oblate spheroid of 5 atomic diameters in the boundary plane and 2.5 atomic 
diameters in the perpendicular direction, which (the latter) is roughly equal to the grain boundary 
width, W. (As the stress–strain field that develops inside a deformed oblate spheroid is already 
worked out [12] this shape for the basic sliding unit was chosen.)  Microscopic sliding persists till it 
is rendered ineffective bysteric hindrances like a triple junction.  For GBS to develop to a 
mesoscopic scale, two or more grains need to align to form a plane interface, which by further 
interconnection with other similar plane interfaces will lead to long range sliding till it gets stopped 
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by an insurmountable barrier like an extra-large grain or a coarse precipitate.  The Driving force for 
plane interface formation arises from (a) minimization of the total free energy of the deforming 
system, and (b) the work done by the external stress reaching its maximum value for this 
configuration.  These processes give rise to a long-range threshold stress which has to be overcome 
for mesoscopic GBS to set in.Thefollowing equations derived are of relevance to this paper. 

 

∆Fo= 


1

2 (β1γo
2+β2εo

2)GVo        (1) 

ε̇ = 



2cwγoν

L sinh



(σ-σo)cγoVo

2kT  exp



∆Fo

kT        (2) 

Vo= 


2

3 πW3; β1=0.944

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1.59-p

1-p ; β2=

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4(1+p)

9(1-p) ; ν=

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h ; W=2.5a;    (3) 

SD = 



Σ(ε̇expt-ε̇pred)

2

n-2
0.5

; AE = 



SD

√n ; r = 
Σε̇exptε̇pred-nε̇m expt ε̇m pred

(Σε̇expt-nε̇m expt) (Σε̇pred-nε̇m pred)
   (4) 

 

Eq. 1 is Eshelby’s equation for the free energy of activation, ∆Fo, for the deformation of the oblate 
spheroid, i.e. the free energy of activation for a basic sliding event, while Eq. 2 is the rate equation 
for the GBS model.  Eq. 3 defines the terms used in Eq.1 and Eq. 2.  The set of equations in Eq. 4 
defines the formulae used for statistical analysis. 

Specifically ∆Fo is the sum of the energy required to shear the basic sliding unit of oblate spheroid 
by unit shear strain,γo and the energy to produce the momentary dilatation, εo, necessarybefore the 
unit shear can take place inside a solid matrix, G the shear modulus of the basic sliding unit at the 
test temperature, p the Poisson ratio, Vo the volume of the basic sliding unit, W the grain boundary 
width, ν the thermal vibration frequency, β1, β2 constants appropriate to the oblate spheroid shape 
[12], k the Boltzmann constant, h the Planck’s constant, T the test temperature on the absolute scale, 
σ the external tensile stress, c a yield–criterion dependent constant(von Mises for the current work 
and so γo= √3εo), SD the standard deviation, AE the average error, r the correlation coefficient, ε̇ the 
external strain rate, the subscripts ‘expt’, ‘pred’ and ‘m’ stand for experimental, predicted and the 
mean respectively, n the number of readings at each temperature and σo is the threshold stress that 
has to be exceeded to enablemicroscopic GBS to develop to a mesoscopic scale. The grain shape is 
assumed to be rhombic dodecahedron. The average grain size is L. 

 

Algorithm: 

Initially γo was assigned a value of 0.10 [15].  Evidently, at every temperature σo should be 
less than the lowest stress at which flow is reported. σo is assigned values starting from δ to 
(σminimum–δ); (δ ~ 0.001 σminimum).At each temperature, in Eq. 2 using the mean of the experimental 
values of the stress and the corresponding strain rate, ∆Fo for each of the σo values was computed. 
At all temperatures, the errors (defined in Table 1) in the prediction of strain rate for all the stresses 
were determined and those combinations of ∆Fo–σo which fell within a prescribed error range were 
accepted. Among these the ∆Fo value at each temperature, which together for the different 
temperatures formed the nearest numerical set, and the corresponding σo values were chosen. Thus, 
the ∆Fo value was nearly independent of temperature.At each temperature, the selected ∆Fo value 
was used, along with Eq. 1, to refine γo iteratively till a near-stable γo value (~ 0.10) was obtained. 
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Computation Outcome: 

Table 1 presents a summary and an error analysis of the results (the error defined as the 

larger between 



ε̇pred

ε̇expt
and



ε̇expt

ε̇pred
).  For this model, a temperature–independent ∆Fo value is expected.  

In contrast, the algorithm is designed to choose those values of ∆F0, which suit the results the best.  
The difference between the maximum and the minimum values of ∆Fo for systems 1 to 5 (Table 1) 
are ~ 20, 10, 12, 17 and 6 kJ.mol-1 respectively.  As the maximum accuracy with which the ∆Fo 
value is measured in an experiment is often ~ ±42 kJ.mol-1 [16], the temperature–dependent 
variation in the ∆Fo value observed may be regarded as due to experimental scatter. 

The graphs below (Figs 1 to 5) illustrate the fits between the experimental and the predicted values. 
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A Careful examination of Table 1 and the figures reveals that the maximum error between the 
experimental and the predicted values of the strain rate at any point for all the systems studied taken 
together is less than 7.  As in “order of magnitude” calculations of the present kind a fit is regarded 
as excellent when the error is less than 10, the fit of the experimental data to the model equations 
for all the systems examined here may be regarded as very good. 

 

Conclusions: 

It is seen that the predictions match the experimental results closely and are well within an 
order of magnitude, even when the same model is used for both metallic and ceramic systems. The 
grain sizes in all but one system are in the sub-micron range.  For γo, a system-dependent, more 
accurate value (which is close to 0.10) is obtained, instead of an average value of 0.10, which was 
assumed earlier based on MD simulations [15]. 
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