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CHAPTER 1 

Introduction and Motivation 

1.1 Introduction 

Combustion is an exothermic reaction [1-3] between reactants, that usually release heat 

energy and produce products in the form of  soot and smoke. Combustion is generally 

classified as Premixed or non premixed combustion, laminar or turbulent, Subsonic or 

supersonic and Homogeneous or heterogeneous. The homogeneous or heterogeneous 

combustion is significant classification of  combustion process based on the nature of  

reactants and propagation of combustion wave. Combustion wave represents a self-

organized system where a chemical reaction, localized in the reaction front, propagates 

throughout the reaction medium converting initial reactants into final products [1-3]. 

Homogenous combustion [3], observed in diesel engine, fuel and oxidizer are mixed 

perfectly to a point of auto ignition. The steady state combustion represents an important 

class of homogeneous process, where invariable space distributions of temperature, 

concentrations, density, etc., propagate with constant velocity through the reactive medium. 

In heterogeneous combustion the chemical reaction exists in more than one physical state. 

The propagation of thermal wave is complicated by the heterogeneous structure of the 

system and results in micro oscillations. The phenomenon of heterogeneous combustion [4-

13] is observed in a variety of processes including combustion synthesis of materials [14-17], 

burning of solid propellants [18-20], coal and biomass [21-22], forest fires [23-25], reaction 

propagation in fluidized beds [26-28] and in clouds of solid particles or spray combustion, 

gasless combustion [29-30]. Gasless combustion waves commonly occur in heterogeneous 

mixtures of powder reactants such as Ta+xC, Ni +xAl, Ti +xSi [31]. Here locally initiated 

exothermic reaction can propagate through the mixture in the form of bright glowing 

combustion front, without notable gasification. The absence of gaseous flame and solid state 

of the combustion products allows terming the process as solid-flame combustion or gasless 

[32-35]. Self-sustained combustion can be realized within some concentration limits for a 

given binary mixture [36-38] of condensed heterogeneous mixtures. Since the combustion 

products consist of valued refractory compounds, gasless combustion makes a basis of 

combustion synthesis technology [14-17], the so-called self-propagating high-temperature 

synthesis (SHS). The SHS is most energy saving, cost effective method of obtaining 

inorganic compounds and it is mainly observed in combustion of heterogeneous mixtures. 
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1.2 Heterogeneous combustion Modeling 

           Some of the significant physical parameters of actual combustion process [41-52] 

include complexities in internal microstructure, distribution of heat sources, heat release, heat 

loss or gain, propagation of combustion wave specifically in multi dimensional systems etc... 

These parameters play a crucial role in actual combustion process. While many researchers 

have contributed to experimental investigations [31, 39-50] of quantification of dynamic 

combustion parameters (burn rate, flame structure…) of combustion process over the years, 

a very few works [33-36, 48-51] are devoted to modeling of heterogeneous combustion that 

includes systematic study for the effects of various physical parameters. Experimental 

investigation of combustion phenomenon has its own disadvantages such as expensive, 

safety measures, time consuming and difficult to track the profile of combustion wave. 

Modeling and simulation can overcome the difficulties of experimental investigations, has 

inherent safety and wide operational features that make them attractive choices for a broad 

range of applications, including combustion of coal, solid propellants, aerosols, thermite 

mixtures etc. These advances are possible by theoretical foundation; the strong interplay 

between theory, experiment, computation; and unified description of the roles of 

combustion mechanics and kinetics. Detailed fundamental understanding of  the combustion 

process should serve as a strong foundation for the prediction of  heterogeneous mixtures 

burning behavior in the more complicated non-steady situations like instability [41-45], flame 

quenching [46-59] and ignition performance. These combustion characteristics can be traced 

from the knowledge of  the internal microstructure and propagation of  combustion wave. 

      The combustion of  heterogeneous mixture is a very complex process [39-50] and the 

influences of physical parameters in disordered system are not carried exhaustively. The role 

of  significant physical parameters and reaction kinetics of  the combustion wave can be 

obtained through mathematical modeling and numerical simulation. The effects of  physical 

parameters in actual combustion process are analyzed from the available experimental data 

[31, 39-50]. These effects are systematically incorporated into combustion wave propagation 

theory and a physical model is developed. Thus combustion wave characteristics are 

predicted for entire range of  heterogeneous mixtures. Results obtained from the numerical 

calculations of  developed model are validated with experimental data. Inferences drawn after 

comparison of  results from experimental and developed model are useful in distinguishing 

the role of  physical parameters played during combustion process. This combination of  

developing physical model, diagnosing the combustion wave propagation and interpreting 



Chapter 1 

 

  
 3 

 
  

data obtained from developed model is the approach followed in investigating the 

characteristics of  combustion wave.   

 

1.3 Disorderness in internal microstructure               

                  Combustible mixtures are characterized by large scale of heterogeneity of the 

distribution of combustible particles [51-52]. In addition the heterogeneous media also 

involves boundary regions between particles. The combustible particles and voids between 

them typically have different physical and chemical properties [51-52, 56-59]. Internal 

structure of heterogeneous mixtures is one of the factors that affect thermal wave 

characteristics [39-52, 56-61]. The role of sample structure and consumption of reactant in 

combustion process were adequately demonstrated by the experimental studies using high 

resolution micro video recorder [39-45]. Such experimental studies have shown that the self-

propagating thermal (combustion) front becomes complex waves at macro scales. In these 

situations the internal microstructure of the actual solid combustible system in most of the 

cases is apriori unknown and is practically difficult, expensive to determine. The 

mathematical model shown in this thesis considers different ranges of internal microstructure 

characterized by disordered spatial distribution of the particles. The concept of randomizing 

the distribution of combustible particles of heterogeneous mixtures accounts for the loss of 

continuity of thermal wave when the characteristic thickness of thermal wave becomes 

comparable with the size of combustible particles. The scope of internal microstructure 

characteristics that have the potential to significantly affect the combustion of heterogeneous 

mixtures is wide and varied. This is because of the complexities associated [31-50] with 

physical and chemical processes that interact and participate during combustion process.  

                Heterogeneous combustion is complicated by internal micro structure and the 

consumption of reaction cells of the system even at stationary mode of combustion. Such 

complications results in micro-oscillations of combustion wave. This phenomenon of 

combustion wave under critical condition of operation leads to combustion limit [39-50]. 

The structure of heterogeneous mixture and consumption of reactants are the major factors 

affecting the dynamical combustion properties. The experiments [45-50] have detected the 

mechanism modes of combustion which is either quasi-homogeneous or relay- race. The 

mechanisms of initiation, ignition, burning and performance of heterogeneous mixtures are 

dominated by the nature of heterogeneities [31-50]. The ignition behavior, performance and 

reaction zone characteristics of heterogeneous mixtures with voids, internal microstructure 

and other discontinuities are very different and neglected by classical flame theories. The 
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knowledge gained from the classic theoretical and experimental studies [31, 39-50] of the 

combustion process in the past allowed progress towards the better understanding of 

heterogeneous combustion process. The continuous wave solution cannot be applied for 

describing the combustion process of such heterogeneous mixtures. However the 

combustion front in such media propagates in a wave like manner and the combustion 

velocity is considered as an average parameter.  Hence homogenous approach can now be 

applied for describing the heterogeneous combustion process if and only if the combustible 

particles are of point size and the size of combustible particles is less than the thickness of 

combustion front.               

                         Present thesis is focused on the development, simulation and validation of 

mathematical model of a heterogeneous combustion process that incorporates various 

physical parameters such as disordered internal micro structure, heat release and heat loss of 

heterogeneous mixtures. The role and significance of physical parameters is established and 

the numerical results calculated from mathematical model are analyzed in detail in the 

chapters.  

 

1.4 Description of Model 

               The internal microstructure of the combustible system is modeled by distributing 

immobile reaction cells (point heat sources) on one, two dimensional chain. Periodic or 

different random distributions are used for positioning neighboring cells. The medium filling 

the space between the reaction cells are characterized by thermal conductivity  , linear mass 

density   and specific heat c. Heat transfer between reaction cells is carried through these 

medium. The cells are characterized by an ignition temperature Tign. When the temperature of 

an unburnt cell reaches the value Tign, the ignition and instantaneous burning away of the cell 

occurs with release of heat. The combustion front propagates from left to right direction i.e 

from burnt cells to unburnt cells. The model under consideration simplifies the reaction 

kinetics of actual heterogeneous combustion process. The parameters of the model such as 

ignition temperature signify the characteristic features of the reactants. If this model is 

regarded to actual combustion of heterogeneous mixtures, the sense of ignition temperature 

becomes apparent with respect to combustible limits and quantity of inert diluent.   

The analysis for heat equation is conveniently carried out in non-dimensional variables 

(shown in chapters 2, 4 and 5) and the governing equation is obtained. In non-dimensional 

variables the one dimensional governing equation between ignition temperature and time is 

given by 
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 Where ε is ignition temperature, x is position and t is the ignition time of the reaction cell. 

For a given ignition temperature, the governing equation enables the finding of ignition 

moment of kth cell, kt , if all it  (for i<k) are known.  The system under consideration is 

single-parametric: all solutions for this system depend on the system structure and on the 

single parameter   - the non-dimensional ignition temperature of the sources.  

Using the one dimensional governing equation for specific system, it is possible to find the 

burning rate both of the one dimensional system as whole and in its different parts. For 

example, a mean burning rate (ω) for the section between the cells i  and ik   is equal to 

)()( ikik ttxx   

In particular for a periodic system, consisting of identical heat source, the analytic solution 

for burn rate is known [34,51]. Nevertheless, for the calculation of non-steady burning rate, 

which always takes place in disordered systems and even in periodic systems at initial period 

of combustion immediately after initiation of the system and also beyond the stability 

threshold [34,51], it is necessary to solve the governing equation. The exothermic reaction is 

commonly initiated by heating one end of the sample. From a theoretical point of view, this 

is equivalent to setting the temperature at one of the boundaries, say x=0, to a specific value

igni TT  , and the rest of the sample at the ambient temperature inT  at t=0. In order to 

achieve a stable ignition of the sample (combustible system) in numerical calculations, it is 

considered, as an initial conditions, that the few of first heat sources are inflamed 

compulsorily and consistently with time intervals  =0; after that the system was left to itself, 

and the process developed in accordance to governing equation. For a given , kt  was varied 

in small steps until the summation in governing equation reached the values of . After cross 

checking the numerical results of a periodic system obtained from governing equation with 

results of analytic solution, the numerical results for disordered system are calculated. 

              The developed model at first stage (one dimensional) is simulated for different 

disordered distributions of positioning neighboring reaction cells to account for randomness 

in internal microstructure. In successive stages the model is incorporated with additional 

physical parameters such as randomizing the distribution of heat releases and heat loss of 

cells. After successful mathematical modeling of one dimensional combustion process, the 

model is extended to two dimensional to account for the structure of reaction front. 
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                     The exercise of numerical simulation of the heterogeneous combustion process 

requires huge computing time on a desktop computer. For example burn rate of an ignition 

temperature obtained from numerical simulation is the result of 40 sets of random 

distributions. Computation time can even extend up to multiple months for two dimensional 

modeling.  Desktop computers with MATLAB cannot serve the purpose. Proper utilization 

of multiple processors that perform sharing and parallel operation at a time can be the best 

option. OPENMPI and MPI [62] are a few of parallel computing systems. C programming 

language is the best available platform for task parallelism. MPI stands for message passing 

interface; here many calculations are performed simultaneously by sharing and synchronizing 

the data between the processors. Master processor initiates the slave processors by 

distributing the data. After the calculations are performed by slave processors, the master 

gathers the computed data from slave. During this operation, the slaves have to wait for 

further instruction from master. Development of super computer with features of parallel 

computing allowed scientists and engineers for mathematical modeling of combustion 

process [62]. High performance parallel computing machine embedded with 128*8 

processors is utilized for numerical calculation.  

       After successful comparison of numerical results with available experimental data the 

model is thus established and validated. Thus models developed are simulated for wide range 

of operating conditions, and results obtained are compared with established theories.  At this 

stage the developed model now can be used as a tool box for predicting and analyzing the 

combustion process. This toolbox reduces the experimental costs and difficulties. Numerous 

numerical experiments can be performed with help of developed toolbox. The numerical 

model developed for modeling the performance of heterogeneous combustion process is 

described along with their application to scientific and engineering problems in the chapters.  

 

1.5 Organization of the thesis 

The thesis is divided into four working chapters 2, 3, 4, 5 and chapter 6 for conclusion. 

Chapters 2, 3 and 4 emphasizes about the numerical simulations, technique, analysis and 

validation of results for one dimensional system. Chapter 5 concentrates on the numerical 

simulation of two dimensional modeling.     

Chapter 2 studies the role of disorderness of internal microstructure in the combustion of 

heterogeneous mixtures. The nature of distribution of particles in heterogeneous mixtures is 

apriori unknown and plays a crucial role in the combustion process. One dimensional 
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modeling of heterogeneous mixtures is categorized into ordered and disordered system to 

perform numerical experiments for propagation of combustion front. Different random 

distributions (uniform, beta, normal and gamma) are employed for distributing the point heat 

sources in a disordered system. Two cases, identical and random, for the nature of 

distribution of heat release of point source in a system are considered. The numerical results 

show that the random structure of microheterogeneous system plays a crucial role in the 

combustion front propagation. Particularly the normal and gamma distribution of arranging 

neighboring reaction cells with identical heat releases can be the powerful methodology in 

describing the combustion process of actual heterogeneous systems. Wide ranges of behavior 

of actual heterogeneous mixtures are reproduced by varying the shaping (a) or standard 

deviation (σ) parameter of the model. As the degree of randomness increases the 

combustion front propagates with stops. Propagation of combustion front in a disordered 

system at higher ignition temperatures has been observed to be in relay race mode.  Burn rate 

of a heterogeneous system sensitively depends on internal microstructure of system. 

Successful comparison of the experimental data (burning of CMDB propellants, thermite 

and powder mixtures) with numerical results obtained with model is performed in this 

chapter. Different combustion limit for different thermite systems observed during 

experiments are the consequences of randomized heat release.  Experimental data for 

thermite systems that have lower inflammability limits are analyzed in the view of 

randomizing heat releases of cells. The model developed in the view of randomizing heat 

release reproduces the experimental burn rates and experimental combustion limit.   

        Chapter 3 proposes a novel approach for correlation between the burn rates and 

discrete probability of neighboring reaction cells of one dimensional disordered system. Role 

of internal microstructure disorderness, with identical heat release, in modeling 

heterogeneous system is clearly established in the chapter 2. However the computation time 

for simulating the combustion process of a disordered system is huge and increases with 

increase in ignition temperature. Numerical technique that cuts down the computational time 

based on the knowledge gained from numerous numerical experiments is proposed in this 

chapter. In the proposed approach, it is shown that the burn rates of a disordered (gamma, 

normal distribution) system can be obtained directly from the selective cumulative count of a 

distribution function that describes the distribution of the spacing of the reaction cells. 

Cumulative count from a lower to upper limit yields the normalized burn rate of a disordered 

system. With the upper limit fixed, the lower limit depends on the non-dimensional ignition 
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temperature. This approach is validated and augurs well with numerical results for gamma 

and normal distribution of spacing neighbor cells over entire range of shaping and standard 

deviation parameters. Additionally, this approach also facilitates the prediction of burning 

limits of heterogeneous mixtures. 

      Chapter 4 studies the role of heat loss in combustion process. Heat energy released by 

the combustion of particle results in retarding the exothermic reaction process due to 

ambient conditions. Heterogeneous mixture like thermite mixtures that involve heat loss are 

considered in this chapter. A one dimensional model is proposed that substantiatively 

explains the characteristic features of thermite mixture. Reaction cells in disordered system 

are arranged by probability density function of gamma distribution. Wide ranges of 

disordered system are obtained by changing the shaping parameter (a) of gamma distribution. 

Numerical results suggest that the heat loss in the actual system does not affect the burn rate 

although plays a vital role in deciding the combustion limit. Heat loss in the system leads to 

decrease in thermal runaway and retards ignition process affecting the combustion limit.  

Numerical results with effect of disorderness in microstructure and heat loss are discussed. 

      Chapter 5 studies about the two dimensional heterogeneous combustion process. The 

computation time for a two dimensional system with optimized periodic boundary 

conditions is of the order of weeks on a desktop computer. Hence to reduce the 

computation time, the parallel computing facility is utilized for running the indigenous code. 

This code parallelizes the task of calculation of temperature of unburnt particles at each step 

of time. The computational time after implementing parallel computing is reduced to hours. 

Analyses of the temperature profile of unburnt particles suggest that the unburnt particles 

can be categorized as conjunction of hot and cool cells. Slice reconfiguration scheme, 

considers around 20% unburnt cells for each iteration, is proposed for further reduction of 

computation time that instead considers only hot reaction cells. This method achieves a multi 

fold improvement in computation time instead of considering total reaction cells, without 

loss of any accuracy. Results show that reaction rate sensitively depends on internal 

microstructure and expansion parameter of the system. Fingering like instability patterns that 

are encountered during experiments are obtained with the developed two dimensional 

model. 

 

      Chapter 6 concludes the results of thesis, and presents a brief description of future 

perspectives. Three dimensional modeling which is more close to actual system and results in 
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this direction can lead us to better prediction of actual combustion process. Progress in three 

dimensional modeling is only possible with step by implementation of all physical parameters 

as described in previous chapters 2, 4 and 5. An In house c code with parallel computing for 

three dimensional model of combustion process has been built. To obtain the optimization 

of parameters (lx,ly,lz, Ny,Nz (periodic boundaries)) the c code consumes around couple of 

months of computation time on work station. The three dimensional work is carried out in 

future work.  
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CHAPTER 2 
Dynamical and statistical behavior of discrete 

combustion waves in One-dimension: A theoretical and 

numerical study 
 
             Present chapter illustrates theoretical and numerical study of combustion waves in a discrete one-

dimensional disordered system. Internal microstructure of a combustible system is discretized and modeled with 

different random distributions. Also two cases for the nature of distribution of heat releases of reaction cells are 

taken into account, one with identical heat release and the other with randomized heat release. To study and 

analyze combustion waves for identical heat release, various random distributions like uniform, beta, gamma 

and normal have been considered for distributing neighboring reaction cells. The results show that the random 

structure of microheterogeneous system plays a crucial role in the dynamical and statistical behavior of the 

system. This is a consequence of nonlinear interaction of the random structure of the system with the thermal 

wave. Particularly the normal and gamma distribution of arranging neighboring reaction cells can be the 

powerful methodology in describing the combustion process of wide ranges of actual heterogeneous systems. The 

burning rate of powder system sensitively depends on its internal structure. The Arrhenius’ macrokinetics at 

combustion of disperse systems can take place even in absence of Arrhenius’ microkinetics; it can have purely 

thermal nature and be related to their heterogeneity and to existence of threshold temperature.  It is also 

observed that combustion of disperse systems always occurs in microheterogeneous mode according to the relay-

race mechanism. Different combustion limit for different thermite systems observed during experiments are the 

consequences of randomized heat release.  Experimental data for Thermite systems that have lower 

inflammability limits are analyzed in the view of randomizing heat releases of cells. The model developed in 

the view of randomizing heat release reproduces the experimental burn rates and experimental combustion 

limit.  

2.1 Introduction 

A combustion wave represents a self-organized process in which a chemical reaction, 

localized in a relatively narrow layer (so called reaction front), propagates throughout the 

reaction media, converting initial reactants into combustion products. Depending on the 

nature of reaction media, the process can be either homogeneous, or heterogeneous, in case 

of medium consisting of several phases. The phenomenon of heterogeneous combustion is 

observed in a variety of processes including combustion synthesis of materials [1–9], burning 

of solid propellants [10–14], coals and biomass [15–17], forest fires [18–20], reaction 
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propagation in fluidized beds [21–23] and in clouds of solid particles or spray combustion 

[24–27]. Gasless combustion waves commonly occur in heterogeneous mixtures of powder 

reactants such as Ta+xC, Ni +xAl, Ti +xSi, CMDB propellants and thermite mixtures etc [1-

9]. Locally initiated exothermic reaction can propagate through the mixture in the form of 

bright glowing combustion front, without notable gasification. The absence of gaseous flame 

and solid state of the combustion products allow us to term the process as solid-flame 

combustion [28]. Self-sustained combustion can be realized within some concentration limits 

for a given binary mixture. Since the combustion products consist of valued refractory 

compounds, gasless combustion makes a basis of combustion synthesis technology [1-9, 28], 

the so-called self-propagating high-temperature synthesis (SHS). The structure of 

heterogeneous condensed mixtures is one of the major factors affecting the combustion 

wave characteristics as well as the properties of the products. An important role of the 

sample structure in such processes became especially evident after experimental studies using 

in situ high-resolution microscopic video recording [5–9]. Such microscopic studies have 

shown that at small time scales the behavior of self-propagating high-temperature reaction 

waves can become complex [5-9]. High-speed microscopic video recording has revealed [5–

9] a micro-heterogeneous mechanism of steady-state combustion in this system: the 

combustion front was found to consist of microscopic hot spots caused by flash burning of 

individual particles in the mixture. 

It is well-known [29,30], that in homogeneous systems under certain conditions a 

stationary process of combustion can be replaced by a more complex, oscillating, modes of 

combustion, and under certain other conditions the combustion becomes impossible. This is 

connected with the non-linearity of the system considered, in which instability occurs under 

certain conditions: the system undergoes a Hopf bifurcation, resulting in a combustion front 

that moves with a pulsating speed. In homogeneous systems, this instability has a thermal 

nature. Such a behavior is characterized for a wide class of nonlinear phenomena from 

physics to life sciences [31]. Under certain conditions, it is associated with the development 

of complex behaviors such as multiple states, abrupt transitions, periodic or chaotic 

oscillations, waves, and spatial patterns [32–33]. In the case of combustion of heterogeneous 

systems, a propagation of thermal wave is complicated by the heterogeneous structure of the 

system. These results in micro-oscillations of combustion wave even at stable stationary 

modes. The extensive investigations in the field of heterogeneous combustion have been 

carried out in the last decade; however most of the works are devoted to experimental 
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investigation of different aspects of combustion of heterogeneous systems. Only very few 

reports are devoted to theoretical analysis of combustion of heterogeneous systems [34-39] 

and there were only a few attempts in the literature to take into account the system 

randomness and its effect on the combustion of heterogeneous systems. A random process 

of propagation of combustion wave in a heterogeneous system, stimulated by interaction of 

combustion wave with a random structure of the system, has, first of all, a fundamental 

interest since it is the simple example of such kind of processes.  

                            The present chapter investigates the above mentioned problems. In this 

chapter, the dynamical, structural and statistical properties of combustion of one-

dimensional disordered heterogeneous system are studied with significance to different 

random distributions employed for positioning neighboring reaction cells and their heat 

releases. The methodology, resembles to Monte Carlo simulation, will enable  to perceive the 

affect of minute changes in microstructure on dynamic combustion parameters such as 

stability of reaction front, ignition delay times and average burn rate. Such minute aspects are 

controlled by discrete model and are illustrated with significant change in parameters such as 

scale and shaping parameter of distribution. The affect of randomizing heat releases on 

combustion process is given very little importance and atmost times neglected in earlier 

literatures. Such situations commonly arise for improper mixing of heterogeneous mixtures, 

changing the diluter and percentage of diluter. Two different cases of reactant consumption 

are considered, in present chapter, by identical distribution of heat release or by randomizing 

the heat release. The use of different random distribution (Normal, beta, gamma and 

uniform) for the distances between the adjacent cells allows studying wide variations in the 

structure of the system, ranging from clusters to completely disordered systems and 

furthering up to regular periodic systems. The novel approach shall optimistically list the 

priority of distributions in modeling a discrete combustion process. The possible limits of a 

combustion process are studied for normal distribution. The discrete model is now validated 

and compared with experimental results performed on combustion of CMDB propellants, 

Ti-Si system and different thermite systems. The above work is performed for identical heat 

release. Most works on combustion modeling have reported that the effect of random heat 

release in combustion process [52-53] is negligible and considered the heat release to be 

identical for all the cells. Section II studies the systematic affect of heat consumption of 

reaction cells on combustion process. The model of discrete combustion waves (percolate 
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combustion) [35, 38] which has very interesting behavior, similar to behavior of combustion 

of actual heterogeneous systems is considered here. 

2.2  Model of the system 

2.2.1  Discrete combustion waves 

The traditional description of solid-phase combustion is based on the heat equation with a 

source term representing an exothermic reaction [40]. In experimental situations, the reacting 

sample usually has a cylindrical geometry and in many circumstances the variation of the 

temperature field along the transversal direction is small and can be ignored. Upon neglecting 

transversal heat losses, the one-dimensional macroscopic equation can be used for 

description of the evolution of the temperature of such a system. A one dimensional system, 

consisting of reaction cells (particles) – the point heat sources, distributed along an axis x, 

similar to earlier reports on combustion of system with periodic and uniform random 

distribution have been considered here [35,38]. As the distribution of adjacent reaction cells 

in actual system is apriori unknown, and the systematic effect of these distributions on 

combustion wave is not investigated until now. In this chapter, different random 

distributions among the distances between the adjacent cells have been introduced.  The 

medium filling the space between the reaction cells is characterized by thermal conductivity 

, density  and heat capacity c. The cells are considered to be immobile and are 

characterized by an ignition temperature Tign. When the temperature of an unburnt cell 

reaches the value Tign, the ignition and instantaneous burning away of the cell occurs with 

release of heat. The model under consideration simplifies essentially the kinetics of an actual 

combustion process and reduces it to two parameters: ignition temperature Tign and nature of 

distribution of heat release iQ . If the model, considered in this chapter, as applied to gasless 

combustion of heterogeneous systems [1-9,28], the sense of ignition temperature  becomes 

apparent. The gasless combustion systems represent a mixture of powders, each of which is 

chemically inert by itself. However, as a result of interaction, they are capable of releasing a 

big amount of heat which is enough for self-sustained combustion. The initial particles of 

powder components constituting the systems of gasless combustion are in the solid state. In 

this state they are unable to enter into chemical reaction with each other because the reaction 

can proceed only after mixing of components. Thus, the melting of components is a 

necessary condition for beginning of chemical reaction in such systems. Experimental data 

[5-9] shows that chemical reaction between the components starts practically immediately 
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after appearance of liquid phase in the system and burn-out time for active particles is always 

essentially less (at least on order) than characteristic time of heating of the particles from 

initial temperature up to ignition temperature. This allows, considering the process of burn-

out of active elements (reaction cells) of the system as instantaneous and the instant of 

reaching of some threshold temperature Tign, at which a liquid phase (e.g. molten materials or 

eutectic) appears in the system, can be considered as an instant of ignition of the cells. The 

problem under consideration is described by one dimensional equation of thermal 

conductivity with delta sources which has solution  
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where inT  is the initial temperature of the system; it  is the instant of ignition of i-th cell, 

located at ix . For a system of identical heat sources 0QQi  . The analysis is conveniently 

carried out in non-dimensional variables [38], by defining the  ignition time for burning cell  
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between neighboring heat sources in the system. In non-dimensional variables the governing 

equation between ignition temperature and time is given by [35,38] 
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For a given ignition temperature, this relationship enables the finding of ignition moment of 

kth cell, kt , if all it  (for i<k) are known. In general Eq. (2) has a set of solutions; however the 

ignition moment kt  corresponds only to the minimal solution of all such possibilities. Thus, 

Eq. (2) allows calculation of the sequence of the times of ignition of all heat sources in the 
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system, and, thereby, to determine the dynamics of combustion. Note that the system under 

consideration is single-parametric: all solutions for this system depend on the system 

structure and on the single parameter   - the non-dimensional ignition temperature of the 

sources. Using the solution of Eq. (2) for specific system, it is possible to find the burning 

rate both of the system as whole and in its different parts. For example, a mean burning rate 

for the section between the cells i  and ik   is equal to 

)()( ikik ttxx               (3) 

In particular, for periodic system, consisting of identical hot-spots(heat source), the steady-

state burning rate Eq. (3) will be the same for all i  and k , and Eq. (2) becomes [35]: 

)( p                      (4) 

where the function is introduced as 
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For the calculation of non-steady burning rate, which always takes place in disordered 

systems and even in periodic systems at initial period of combustion immediately after 

initiation of the system and also beyond the stability threshold [35], it is necessary to solve 

the non-linear algebraic Eq. (2). The exothermic reaction is commonly initiated by heating 

one end of the cylindrical sample. From a theoretical point of view, this is equivalent to 

setting the temperature at one of the boundaries, say x=0, to a specific value igni TT  , and 

the rest of the sample at the ambient temperature inT  at t=0.  

                        In order to achieve a stable ignition of the sample (combustible system) in 

numerical calculations, it is considered, as an initial conditions, that the 1000 of first heat 

sources are inflamed compulsorily and consistently with time intervals  =0; after that the 

system was left to itself, and the process developed in accordance to Eq. (2). For a given , 

kt  was varied in small steps until the summation in Eq. (2) reached the values of . Basically, 

once the reaction is initiated, one observes the formation of a heat front that, after a short 

delay, starts to propagate with a constant speed up to the vicinity of the outer boundary, 

x=L. However, under some particular circumstances, this “stationary regime” may become 

unstable. The system under consideration is non-linear one and it posses the complex and 

interesting behavior depending on its structure and ignition temperature   [35, 38].  
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2.2.2 System structure 

Spacing of unburnt reaction cells in periodic system is done by regular spacing at a distance 

of unit. Random system that involves distribution of positioning unburnt cells is achieved by 

probability density function of various random distributions namely uniform, normal, 

gamma and beta with a mean of unity. The Probability density function for different 

distributions are listed in Table 2.1. A gamma distribution with shaping parameter a=0.7 and 

normal distribution with =0.05 are also considered for comparison. Total reaction cells in 

the model are considered as concatention of 1000 burnt and 2500 unburnt cells.  

               These probability density functions of different random distributions are employed 

in positioning adjacent reaction cells. Thus modeled systems are numerically simulated using 

eqn. (2). While performing numerical simulations two cases of distribution of heat release (qi) 

are considered: 1) Identical het release and 2) Disordered heat release. 
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Table 2.1 Probability density function for different random distributions. 

Figure 2.1 shows the probability density functions for spacing unburnt cells. The average 

spacing of particles is always maintained to be unity to facilitate a direct comparision of the 

results with a periodic system [1].  
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Figure 2.1 Probability Density Function for different Distributions 

2.3 Numerical Results 

Section I Identical Heat release 

Combustion of the systems with two different structures has been considered in [35,38]: (i) 

with periodic spacing of the reaction cells and (ii) with random distribution of the reaction 

cells along the axis x. Ignition time profiles are obtained by using Eq. (2) for different 

distributions (shown in figure 2.1) of positioning neighboring reaction cells at different 

ignition temperatures ε. Note, identical distribution of heat release at all reaction cells is 

considered here. Figure 2.2 shows the ignition time profiles at different ignition temperatures 

of a combustible system described by different probability density functions employed for 

positioning neighboring reaction cells as shown in Figure 2.1. =0.05 for normal distribution 

and a=0.7 for gamma distribution are considered for comparison. Ignition time profiles 

depend both on the classification of distribution and ignition temperatures.  
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Figure 2.2 Ignition time profile for different distributions. (1)Normal (2) Beta (3) Uniform (4) Gamma 

(a=0.7). 

The randomness  in microstructure of a system also has critical influence on the ignition time 

profiles. The ignition time profiles are linear for both normal distribution and beta 

distribution of neighboring reaction cells and is identical to the periodic system. This can be 

inferred from figure 2.1, where it can be seen for a beta distribution about 70 percent of the 

cells spacing’s are in the range of 0.8 to 1.2 and 100 percent for the normal distribution. The 

particles in spite of their random spacing, bear a close resemblance to a periodic system with 

unit spacing and hence a linear relation. However, the combustion front, for gamma 

distribution of neighboring reaction cells with shaping parameter a=0.7, is noticeable with 

more stops as the ignition temperature increases. Also a similar affect can be seen for a 

normal distributed system with higher values of σ, which will be shown in next section. 

Instability in combustion or reaction front stops is more prominent at higher ignition 

temperatures and higher degree of randomness in microstructure of the system.   

At higher ignition temperatures, though the quantity of heat energy obtained from the burnt 

cells is same as compared to a corresponding periodic system, the front sees stops in the 

propagation of reaction front as a result of the randomness of neighboring reaction cells. 

With an increase in degree of randomness of positioning neighboring reaction cells, the 



Chapter 2 

 

  

 24 

 

  

obtained heat energy has to overcome the disordered microstructure of system, particularly 

those points on the chain where the neighbor-cell spacing is very large. This can be 

quantified by observing the maximum ignition delay times of a system. The combustion 

stops in reaction front propagation are result of increased ignition delay times. Delays in 

ignition times are due to increase in induction periods between active cells and ignition 

temperature of a developed system. 

Figure 2.3 shows plot between ignition temperature and maximum ignition delay times of a 

system. These maximum ignition delay times are obtained from the correlation analysis 

between adjacent reaction cells and their ignition delay times. From the correlation analysis it 

is observed that the variance of the ignition delay times increases with increase in degree of 

randomness in microstructure and ignition temperature. 
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Figure 2.3 Comparison plot for maximum ignition delay times of adjacent cells. 

From Figure 2.3 it is observed that maximum delay in ignition times of a system is 

proportional to degree of randomness in microstructure and ignition temperature of the 

system. The maximum delay in ignition times at particular ignition temperature shows the 

trend periodic < normal (σ=0.05) < beta< uniform < gamma (a=0.7). The maximum 
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ignition delay times also plays the crucial role in deciding the stability of reaction front and 

thus burn rates.  

               As the nature of distribution of reaction cells in actual systems is apriori 

unknown and it is of academic interest to find out the appropriate distribution. At the same 

time, the analysis of experimental data [9,47] shows, that the structure of actual system 

changes with a change in concentrations of powder components; this results in changing in 

burning rate of the system even if all other parameters remain constant (e.g. at the constant 

burning temperature). For this reason it is interesting to investigate the model system with 

wide variations in structure which allows studying the effect of system structure on its 

combustion.  For Beta and uniform distributions, it is observed that there is no change in 

shape of distribution and consequently there is no effect on burn rates. Burn rates are 

calculated using eqn.(3) are shown in subsequent sections. Gamma and normal distribution 

of neighboring reaction cells have an advantage of variation in shaping and standard 

deviation parameter.  Hence the numerical calculations for the discrete model developed in 

the view of normal and gamma distribution of neighboring cells have been carried out. 

Gamma or normal distribution has additional advantage of shaping parameter without 

change in mean.  

 

2.3.1 Gamma Distribution 

2.3.1.1 Characterization of system structure 

A one-dimensional system in which the distances L between neighboring reaction cells 

are random ones adhering to the gamma distribution is  

)exp(
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

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                    (6) 

where a  is a shaping parameter has been considered in this study. The mean distance 

between cells is always equal to unity in non-dimensional variables. The parameter a  in the 

Eq. (6) allows varying the system structure in the wide ranges and investigating the effect of 

the structure on propagation of combustion wave. Probability density for gamma 

distribution, calculated by using expression Eq. (6) and obtained numerically by Monte Carlo 

method is shown in Figure 2.4.  
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Figure 2.4. Distribution of the distances between neighboring hot spots. The polygonal lines are the 
histogram of specific realization, smooth lines are theoretical probability density Eq. (3). a) a=0.7; b) 
a=1; c) a=5; d) a=20. 

 

One of the most important characteristic of random structure is a pair distribution function 

)(rg , which is defined for one-dimensional system as follows 
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 where ),( drrN  is the number of reaction cells on the segment ],[ drrr  , located on the 

distance r from given cell, averaged throughout the cells of the system; n  is the mean 

density of reaction cells on the axis x; in non-dimensional variables n =1. The pair 

distribution function (7) is shown in figure 2.5, calculated for different values of shaping 

parameter a. From Figure 2.4 and 2.5 it can be seen that the formation of long-range order in 

the system occurs with an increase in parameter a  in the range 1a  and at a  the 

system becomes a periodic one. On the contrary, the probability of very closely spaced 

reaction cells increases for 1a . Clusterization of the reaction cells occurs in the system for 

1a : the cells are collected in dense groups (clusters). The distance between cells in the 

cluster can be very small (r<<1), resulting in the practically simultaneous ignition of all cells 

in the cluster. This means that cluster can participate in combustion as a unified reaction cell 
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with a bigger heat release, which is equal to sum of heat released by all elementary reaction 

cells incorporated into the cluster. It is necessary to note that the number of elementary 

reaction cells in the cluster will be random and the total heat release is quantized: iq n , where 

iq  (identical for all cells) is the heat release of single elementary reaction cell, ,...2,1n  is the 

random integer, equal to number of elementary reaction cells incorporated in the cluster.  

Thus, the system with gamma distribution of distances between neighboring reaction cells 

allows modeling the systems with wide-range variations in its structure: from clusteres ( 1a

) to completely disordered ( 1a ) and further up to regular periodic systems ( a ). 

 

 

 
 

Figure 2.5. Pair distribution function for cells in the system for different values of the shaping 
parameter: a) a=0.7; b) a=1; c) a=5; d) a=20. 
 

 

2.3.1.2 Burning Front Propagation 

Propagation diagrams of discrete burning front, obtained by solution of Eq. (2) for different 

values of shaping parameter a  and different ignition temperatures   are shown in Figure 

2.6. All lines in Figure 2.6 for single parameter a, but for different values   correspond to the 

same realization of random structure of the system. Combustion occurs in form of 
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consequent jumps: relatively long periods of front stopping (induction periods) are followed 

by fast burning-out of some part of the sample with practically constant burning rate, and 

followed by a new induction period again. Duration of induction periods and periods of 

“continuous” combustion are random and it is connected with the random structure of the 

system [5-9]. In experiments [9], the change of mixture parameters and in concentrations of 

powder components (e.g. a changing in stoichiometric coefficient x  in mixture SiTi x )  

results in either regularization  or stochastization of combustion process. The former 

resulting from the fluctuations of duration of induction periods decrease and process 

becomes more stable, and the latter when combustion becomes more random one with long 

and random induction periods. 

 

Figure 2.6. a) a=0.7; b) a=1; c) a=5; d) a=15. Propagation diagrams of discrete burning front for 

different ignition temperatures . The ignition temperatures are indicated over each line.  

 

A similar behavior of burning front is observed in the model under consideration. It follows 

from figure 2.6 that a stability of combustion process decreases with a decrease in parameter 

a: the lesser the more pronounced a discrete and random nature of the process. For the same 

values of parameter a, the process is more regular at smaller ; the more   the more random 

is the process, the stronger effect of fluctuation of random structure of the system on the 
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burning front propagation. Calculations show that for 45.0  it is impossible to have a 

stable combustion process for any initial conditions: the system is extinguished after burning-

out of some number of reaction cells. Theoretically, this appears as follows: due to system’s 

random structure there are always neighboring pairs of reaction cells with extremely long 

distance between them. The induction period for these pairs is also extremely long. The 

ignition delay time increases with increase in non-dimensional ignition temperature   for all 

pairs of reaction cells but more rapidly for pairs with long distances. This is clearly seen in 

figure 2.6 (especially in figure. 2.6 (a) and (b)). At 45.0~  the induction period for one of 

the pairs of hot-spots having a long distance becomes so much bigger that the temperature 

field in the system has enough time to level off due to thermal conductivity. As a result, the 

temperature of the next unburned hot-spot does not reach the ignition temperature and its 

ignition does not occur. This immediately results in stopping of combustion of the system as 

whole.  

The theory of inflammability limits was developed by Zel’dovich [42] and Spalding 

[43] for steady propagation of flat premixed gas flames. According to this theory, an 

inflammability limit is a direct result of heat losses. Roughly speaking, propagation of 

combustion wave becomes impossible when the rate of heat losses into ambient 

environment grows faster than the rate of heat release from exothermic combustion reaction. 

Dilution of initial mixture with an inert compound as well as deviation from optimal 

(Stoichiometric) ratio decreases the heat release, therefore, an inflammability limit can be 

reached in this way. This approach does not look such evident in the case when heat losses 

from the sample surface are negligible compared to heat release inside the sample (e.g., in 

case of large samples). The classical theory suggests that, in the latter case, the inflammability 

limit is determined by radiative heat losses [44]. This cannot be directly applied to gasless 

mixtures because they are opaque and, therefore, radiation cannot escape from the inner 

regions of the sample. The model under consideration shows that inflammability limit can be 

reached due to changing of kinetic parameters of the system (e.g. the ignition temperature) 

even at absence of heat losses. The analysis of figure 2.6 shows that decrease in non-

dimensional ignition temperature of hot-spots   and increase in shaping parameter a  results 

in regularization of combustion process. On the contrary, an increase in non-dimensional 

ignition temperature   and decrease in shaping parameter a  results in stochastization of 

combustion process with strong induction periods corresponding to the horizontal segments 

in figure 2.6. Because the combustion of the system under consideration represents the 
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sequence of ignition of discrete hot-spots, the burning rate is actually determined by the sum 

of ignition delay periods between neighboring hot-spots. Therefore it is of interest to analyze 

a correlation of the ignition delay time between neighboring hot-spots and distances between 

them. From the definition of non-dimensional steady-state burning rate for periodic system 

it can be written as 

21Lp
                   (8) 

where   is the time interval between ignition of neighboring sources; L  is the non-

dimensional distance between neighboring sources; )(p  is the non-dimensional burning 

rate for periodic system with unit distances between neighboring sources [35,38]. Figure 2.7 

shows the correlations between   and L , obtained in calculations of combustion of 

disordered system with gamma-distribution eqn.(6) for different values of shaping 

parameters a  and non-dimensional ignition temperature ε. 

A treatment of the results of calculations (Figure 2.7) shows, that upper and lower 

boundaries of interval of tolerance can be described by expression 

mLab ),(                                  (9) 

where ),( am   and ),( ab   are the parameters which depend on   and a ; parameters 

),( ab   characterize the upper and lower boundaries of interval of tolerance. As mentioned 

above, for a  the system under consideration turns into a periodic system for which in 

accordance with Eq.(9) 2m . 

Correlation analysis of results of numerical calculations of Eq. (2) for system under 

consideration in wide-range of parameters ]20...7.0[a  and 45.0  results in following 

expression for the power ),( am  :  

 266.0 )003.00012.0()ln029.01.0(18.3exp2.02 aam                                (10) 

having the correct limit 2m  as a  and for 0 . 
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Figure 2.7. Correlation of time between ignition of neighbor heat sources and distance between them 
for a=1 (left) and a=15 (right). Dots are results of numerical solution of Eq. (3), solid lines are 

correlation Eqs. (12), (10) for 1 : line 1 -  =0.05, line 2 -  =0.4. 

 

Note that in limiting range ]20...7.0[a  one can use the more simple expression 

27.023.201.02.2 aam                  (11) 

which has the same degree of accuracy but has not the correct limit 2m  at a  and 

0 .The calculations show (figure 2.7) that a line 

m
p L1                    (12) 

can be used for fitting of correlation under consideration, where   is the fitting parameter 

of order of unit. 

2.3.1.3 Theoretical considerations 

In this section a theoretical dependence for normalized burn rates is obtained for comparing 

numerical results. Correlation Eq. (12) allows finding a theoretical dependence of burning 

rate of the system under consideration on the parameters a   and . Average burning rate of 

disordered system is calculated for the time intervals between ignition of neighboring sources 

and the distances between them are related by Eq.(12). Consider some time interval, during 

which some number of heat sources 1N  are burned away. Duration of this time interval 

is 
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one can easily obtain while taking into account Eq. (6) 
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is the gamma-function. 

Mean burning rate of the system under consideration as a whole 

N
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N
  

or with taking into account Eq. (13) 
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Taking into account Eq. (14), it is obtained as 
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            (15) 

In the limit a  the system becomes periodic; this means that )( pr  , moreover 

in accordance to Eqs. (8), (9) 2m  in this limit. Taking into account this result 

1
)(

)(
lim 





 ma

aam

a  

is obtained; thus one concludes that 1  in this limit. Figure 2.8 shows 

both the burning rates, obtained by direct numerical solution of Eq. (3) and the theoretical 
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dependencies, calculated by using Eqs.(10), (15) with 1 . It can be observed that 

theoretical dependence Eqs.(15) and (10) with 1  correctly describes the results of direct 

numerical simulations in the whole range of parameters a  and  . For this reason, the 

dependence Eq. (12) with the condition 1 will be used in further analysis of combustion 

process in the system under consideration. Equation (11) generalizes the results [38] on the 

case of arbitrary value of shaping parameter a . In particular, 

 
1

)(),(lim
0 


 a

a
a pr 


                    (16) 

 

 

 
Figure 2.8. Dependence of burning rate on ignition temperature   for different values of shaping 

parameter a. Markers are the results of direct numerical solution of Eq. (3); lines are the theoretical 

expression Eqs. (15), (10) with 1 . 

 
Thus, the burning rate of a disordered system is always less than a burning rate of the 

periodic system with the same adiabatic burning temperature and the same ignition 

temperature ignT . The mathematical models with periodic structures are used very often for 

simulation of the real heterogeneous systems [8,34,35]; in doing so, the periodic models have 

the same average characteristics as those for the real systems. It is usually assumed that mean 

burning rate obtained in simulations of such periodic model should be equal to a mean 

burning rate of real disordered system. The results above show that this is not the case: a real 
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system (e.g. aerosol, SHS-system, composite solid propellant etc.), which has a disordered 

structure, cannot be substituted by a periodic system in simulations because their burning 

rate can differ by many times. 

 

2.3.1.4 Self-similarity in burning front propagation 

Analysis of the dependences of ignition time of hot-spots on their coordinates )(xt  for the 

same random realization of the system structure but for different   (figure 2.6) shows that 

they share a number of traits with each other. It is seen from figure 2.6, that the same 

features of function )(xt  present on dependences )(xt  for all  : at the same points x  on all 

curves there are the similar heterogeneity; they differ by only a scale, which increases with  . 

Thus, dependences )(xt , corresponding to different  , reproduce the same features of 

combustion wave propagation, reflecting the peculiarities in internal structure of the system. 

The scale of these peculiarities on the curves )(xt  is different for different  : the less the   

the less manifestation of the system structure in the process of propagation of combustion 

wave and on the contrary, the more the   the stronger manifestation of peculiarities of the 

system structure in combustion. This is a result of non-linearity of the system which 

amplifies the fluctuations of combustion process induced by random structure of the system. 

For analysis of these features, the dependencies )(xt  were processed in coordinates 

 riii xxxt
A

x  )()(
1

)( 0  

where r  is the burning rate of the system at given ),( a ; parameters )(A  and )(0 x  

were selected to give the best match of dependences )(x  at all   for given structure of the 

system. The results of such calculations for 1a  are shown in figure 2.9. Similar 

dependences )(x  take place also for other values of parameter a . It can be seen that in the 

whole range of   almost identical dependence )(x  are obtained, differences exist only in 

fine details. Deviation from unified dependence in the initial period is connected, apparently, 

with the transient process, however, one can see even in this period all the dependencies 

)(x  have the same features and repeat each other. Thus, one can say that propagation of 

combustion front over a given system of hot-spots is described by unified dependence for all 

 : 

 
)()()( 0 irii xAxxxt  
                                          (17)                                                                          
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reproducing all main features in behavior of combustion front; in doing so the function 

)(x  does not depend on   and it is determined only by the system structure, i.e. by 

distribution of reaction cells in the system 

 

Figure 2.9. Dependencies )(x  for 1a  and  =0.05...0.4 with step 0.05. 

 

. This means that function )(x  is different for different random realizations of the system 

structure. This allows one to say that propagation of combustion front in one-dimensional 

system with random distribution of hot-spots is self-similar and function )(x  is some 

structure function which characterizes mainly the structure of the system and weakly 

depending on its kinetic characteristics, in particular on  . This means that function )(x  

will be the same both at relatively big values of   and at 1 .  

 

2.3.1.5 Standard deviation of burning time   

Experimental data on combustion of powder mixtures [5-9] show that process of 

propagation of discrete combustion wave in actual systems is random and it is accompanied 

with essential fluctuations of both instantaneous and local parameters of combustion wave 

and burning rate of the system as a whole. The results of modeling confirm these facts 

(Figure 2.6 and 2.7). Fluctuations observed in calculations are connected with both random 

structure of the system and non-linearity of the system as a whole: the non-linearity of the 
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system in combination with its random structure at certain conditions can amplify a non-

uniformity of combustion process up to its total termination. These results in dependence of 

the parameters of combustion wave (primarily the burning rate of the system) on specific 

realization of random structure of the system and have the essential fluctuation from 

experiment to experiment. The fluctuation of burning rate of the system is estimated as a 

whole. Consider the burning time of the system, consisting of N reaction cells 

                                                         




N

i
iNt

1

                                                                            

  The ignition delay times i  depend on location of hot-spots in the system and for system 

under consideration they are the random. The discrete random process iL , ,...3,2,1...,i , by 

definition, is markovian one. Standard deviation of the system’s burning time  is calculated 

based on the assumption that discrete random process i  is also markovian, that is, the 

ignition delay times i  relating to different hot-spots are the statistically independent random 

quantities. In this case the burning time of the system consisting of N  hot-spots has the 

mean value 

 NtN                              (18) 

and standard deviation 

2222   Ntt NNt                     (19) 

The relative standard deviation of the system’s burning time together with Eq. (18) is  

1
1

2

2







 



NtN

t                                (20) 

Using the correlation Eq. (12) with 1 , it can be written as 

  m
p L1 ,   m

p L222                    (21) 

where  mL  is determined by the expression Eq. (14) for any m .  Using Eqs. (21) and (14), 

for relative standard deviation of the system’s burning time  one obtains the expression 

1
)(

)2()(1
2







 ma

maa

NtN

t                            (22) 

 where the parameter m  is determined by the correlation Eq. (10). Figure 2.10 shows the 

calculated dependencies of relative standard deviation on the number of hot-spots in the 
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system for different values of ignition temperature   for a =1 and a =15. The markers in 

figure 2.10 indicate the results of direct calculations using the dependences )(tx  obtained by 

solution of the Eq.  (2). In the latter case, the time of burn-out of different segments with N  

hot-spots for the same sample were analyzed.  These segments were considered as separate 

samples (different realizations of the random structure), consisting of N  hot-spots. Such an 

analysis was carried out for different random realizations of the system for the same value of 

parameter a , in so doing the parameter a  was varied in the range [0.7…20]. 

 

 

 Figure 2.10. Dependence of relative standard deviation of burning time on number of particles for 

different ignition temperatures  . a=1 (top), a=15 (bottom). Markers are direct calculations; lines are 

theoretical dependence (22). 
 

As a consequence of this analysis, the mean value and standard deviation of the burning time 

were determined. The relative standard deviation of burning rate approximately equals to 

relative standard deviation of burning time for the same sample. Dependence of fluctuations 

of burning time on number of hot-spots in the system Eq. (22) is the standard one for 

Markov random processes [45]. 

 

2.3.2 Normal Distribution 

Normal distribution also offers several advantages - its fixed shape and positioning 

adjacent cells with controlled deviation from mean, around 65 percentage of adjacent 

reaction cells are positioned within one standard deviation, also describes the microstructure 

of heterogenoeus mixtures. The flexibility of using normal distribution is due to fact that 

curve may be centered over any number of real lines and it may be flat or peaked to 
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correspond to amount of dispersion in the values of random variable. The variance of 

normal distribution corresponds to concentration of point source particles of system when 

compared to that of periodic system. Different cases of normal distributed systems 

characterized with different standard deviations are considered for modeling and simulation. 

The combustion stops are more prominent for higher values of variance and higher ignition 

temperatures. The induction periods for higher ignition temperatures and higher variance of 

adjacent reaction cells increases. Burn rates of the systems with normal distribution of 

adjacent cells are obtained using Eq. (2) and are normalized to burn rates of a periodic 

system for different ignition temperatures as shown in figure 2.11. By changing the 

parameters of a distribution, the inter cell spacing can be altered, which is reflected in the 

probability density function. However, for normal distribution, the burn rates can be varied 

by changing the parameter (σ). Symbols in figure 2.11 shows the normalized reaction burn 

rates calculated for different normal distributions. This detail provides us the possibility of 

tailoring burn rates of a system by suitable normal distribution. The normalized burn rates of 

a normal distribution are in the wide range (0.3-1). It can be seen that ratio =1 resembles to a 

periodic system and 0.3 is closer to a high degree of disordered system. As variance of system 

increases the concentration of sample density decreases and its reaction front propagation 

corresponds to relay race homogeneous mechanism where as the reaction front propagation 

for the system with low variance correspond to quasi homogeneous mechanism. Numerical 

simulations suggest that apart from gamma distribution of reaction cells the normal 

distribution of reaction cells can also achieve wide ranges of the combustion of actual 

heterogeneous systems. This shall be made evident by comparing the developed model with 

available experimental data.  

2.3.2.1 Theoretical Analysis for Burn Rates 

The present section illustrates the theoretical analysis for dependence of burn rates of a 

random system, normalized to burn rates of periodic system, on variance of the distribution 

of neighboring reaction cells. Thus obtained theoretical expression is also compared with 

numerical results. Burn rates of combustible system (developed model) under consideration 

are determined by sequential calculation of ignition times of reaction cells.  

The correlations (m), between   and L , are obtained for a disordered system, described by a 

normal-distribution of neighboring reaction cells (L), as a functional dependence on variance 
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(
 ) of distribution of neighboring reaction cells(L) and ignition temperature (ε). As 0   

the disordered system described by normal distribution of neighboring reaction cells (L) is 

similar to periodic system. Correlation analysis is performed on numerical calculations of Eq. 

(2) for a disordered system over a broad range of parameters [0.4...0.05]   and 0.48  . 

The correlation factor (m) thus obtained in terms of power functional dependence of 

( , )m    is as follows:  

 0.66 42 0.2exp 3.18 (0.1 0.029ln ) (0.0012 0.003 )m             (23) 

As 0   for a disordered system the correlation limit 2m  at 0 . The limiting 

range considered for normal distribution of neighboring reaction cells (L) is 

[0...0.4...0.05]   hence the Eqn.(23) can be further modified to straightforward 

expression as 

                           
2 2 0.272.2 0.01(1/ ) 2.23(1/ )m                                     (24) 

The expectation value for Lm with L described by normal distribution in accordance with 

periodic system Eqn.(12) is given as.  


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

0

)( dLLPLL mm  

The above equation converges for m being integer and the solution obtained is given below 

as. 
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 
 

  
                   (25) 

In the limit 
2 0   the system becomes periodic; this shows that )( pr  , in 

accordance to Eqs. (12) 2m  in this limit. Subsequently we obtain

2

2 2

2
0

(1/ ) ((1/ ))
lim 1

((1/ ) )

m

m 

  


  
; thus one can conclude that 1  for this limit. Figure 2.11 

shows the comparison of burn rates, obtained by direct numerical solution of Eq. (2) , (3) 

,represented by markers, and the theoretical dependency, calculated by using Eqs.(24), (25) 
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,represented by solid lines, with 1 . It is evident that the theoretical dependence Eqs.(24) 

and (25) with 1  properly explains the results calculated by numerical simulations using 

Eq.(2) and (3) for the whole range of parameters   . Generalized expression for the 

theoretical dependence of normalized burn rates on variance is obtained and now can be 

used for direct calculation of burn rate if   is known. 

 

Figure 2.11. Comparison plot for normalized burn rate and non dimensional ignition temperature   

for different values of σ. Markers are the calculated results of Eq. (1),(2); lines are obtained by the 

theoretical expression Eqs. (24), (25) with 1 . 

 2.3.3 Comparison With Experimental Data 

2.3.3.1 Ti-Si system 

Here correlation for the shaping parameter (a (gamma distribution)) and standard deviation 

(σ (normal distribution)) in the view of one dimensional model, with the stoichiometric 

coefficient of actual heterogeneous mixtures is obtained. The work [9] for combustion of Ti-

Si system is considered, for comparison in the view of developed model, since the amount of 

gas released is relatively small. The combustion process of Ti-Si mixture is represented as Ti 
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+xSi, where x is referred as stoichiometric coefficient. The plot for measured mean burn rate 

r  and stoichiometric coefficient x is shown in Figure 2.3 from work [9], along with 

measured adiabatic temperature TB. It is investigated that heterogeneous combustion of Ti 

+xSi mixtures occurs in range of x=[0.3, 1.5] as shown in work[9]. Burning rate, changes 

with change in stoichiometric coefficient. The maximum burning rate (38 mm/s) of mixture 

coincides at highest value of burn temperature TB. Burn rate is maximum at x=0.6 which 

corresponds to synthesis 5Ti+3Si→Si3Ti5.  Behavior of burn rate in range of x=[1, 1.4] 

essentially varies by previous trend: rate of burning decreases in the specified range even for 

the constant burning temperature. Such situation commonly arises in combustion process of 

heterogeneous mixtures of Ti+xSi, where combustion process is associated with phase 

transformations and complex micro structural properties. Currently no such alternate 

heterogeneous combustion models exist, for quantitative description of change in burn rate 

of thermite mixtures at constant burn temperature. Developed model, in view of gamma and 

normal distribution of neighboring reaction cells, has an additional scale of choice for 

tailoring neighboring reaction cells with variation of shaping and standard deviation 

parameters respectively. Change of shaping parameter or standard deviation parameter, for 

describing microstructure of system, results in change of burn rate, even at constant non-

dimensional ignition temperature . Such a model explains change of burn rate for 

combustion of Ti+xSi mixtures in the range of x=[1, 1.4] where its burning temperature is 

constant as shown in figure 2.3 from work [9].  From developed model, it is observed that 

the burning rate decreases with change in shaping, standard deviation parameter. It is 

sufficient to presume that shaping or standard deviation parameter depends on stoichiometry 

coefficient x.   

According to the developed model, the dimensionless burning rate depends on the 

dimensionless ignition temperature of reaction cells and the structure of the mixture, which 

is described by the shaping parameter a . Thus, the shaping parameter a  is an additional 

"degree of freedom" for the burning rate of heterogeneous systems: a change of the shaping 

parameter can result in changing in the burning rate, even at a constant non-dimensional 

ignition temperature  . This allows explaining a change of burning rate of heterogeneous 

mixtures Ti+xSi in the range x=[1, 1.4] where its adiabatic temperature is constant. It is 

enough to assume that the shaping parameter a depends on the stoichiometry x. Calculations 

of the burning rate of the mixture Ti+xSi were carried out by using dependencies 
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),(0 arr r                                   (26) 
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where ignT , 0r  are the constants; ),( ar   was calculated according to Eqs. (10), (15) with 

1 ; )(p  was calculated according obtained in [35] for periodic system; )(xTB  was 

determined by using data [9] (Figure 2.12); inT =300 K. As described above, in the 

developed model it is impossible to organize a stable combustion process at 45.0  under 

any initial conditions for the whole range of parameter a . This should be seen as a natural 

inflammability limit for the combustion model under consideration. In the experiments [9], 

the inflammability limits x = 0.3 and x = 1.5 were obtained for heterogeneous mixtures 

Ti+xSi. The developed model allows explaining these inflammability limits, assuming, that 

45.0  outside the range x=[0.3, 1.5]. Thus, numerical calculations were assumed that 

45.0  on the both inflammability limits, obtained in the experiments; this allowed 

determined the value of ignT = 950 K.  

 
Figure 2.12.  Burning temperature TB ( squares: scale in K, on the left) and burning rate r  (bullets: 
scale in mm/s, on the right) as a function of the stoichiometry x of the initial sample. Markers are data 

of [9], solid line )(xr  is the theoretical dependence (26), (27) for gamma distribution. Inserting 

shows the dependence of shaping parameter a on the stoichiometry x used in calculation; dashed lines 
are the combustion limits. 

 

Dependence of the shaping parameter on the stoichiometry x , )(xa , was matched to obtain 

the best fit with experimental data on burning rate. For definiteness, it is assumed that 1a  
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at the inflammability limits. Matched dependence )(xa  is shown in the inset of figure 2.12. 

Calculated dependence of the burning rate on the stoichiometry x  for Ti+xSi is also shown 

in figure 2.12 by solid line. Note in calculations 0r = 12 mm / s. Thus, the variations in 

shaping parameter a  can completely describe the dependence of the burning rate on the 

stoichiometry x  at constant burning temperature. Analysis of dependence )(xa  (Figure 

2.12) shows that the shaping parameter a  reaches a maximum value a 94 at x = 0.8. As 

shown above, the more 1a  the more ordered is the system: as a  the system tends 

to be periodic. Obtained dependence )(xa  shows that the Ti+xSi mixture becomes more 

ordered at x 0.8, while, by contrast, the mixture becomes disordered if it moves away 

from x = 0.8. Such a behavior of structure of the mixture can be connected with peculiarities 

of packing of Ti and Si particles in the volume of the mixture during the mixing process at 

different concentrations of the components. 

                    As described in earlier section, in the view of developed model for combustion 

process it is not possible to systematize a stable combustion process for 0.45   under 

several primary circumstances in the entire range of standard deviation parameter. 0.48   

is interpreted as natural combustion limit for developed combustion model. Equivalent of 

1840 k is obtained, in non dimensional ignition temperature by Eqn. (27), as 0.44  . The 

experimental burn rates at different stoichiometric mixtures for constant burning 

temperature are treated by 

0 0( )( )cr cr crx x l l    

Figure 2.13(a) shows for Burn rate v/s stoichiometric coefficient and Burn rate v/s standard 

deviation   shows the correlated values of stoichiometric coefficient and standard 

deviation. The solid line shows the numerical burn rates for different standard deviation 

parameter at ε=0.44 (~1840 k). Symbols represent experimental data. Matched dependence 

of stoichiometric coefficient x and standard deviation σ for common value of burn rate is 

obtained. Now the dependence of standard deviation ( )x on stoichiometry coefficient x , is 

obtained by performing best fit on experimental data of burn rate. Similar to analysis 

performed for certainty, it is assumed 1   for the lower combustion limits. Matched 

dependence ( )x   is shown in the figure 2.13(b). Thus, variations in standard deviation of 

neighboring reaction cells completely correlate dependence of burn rate on stoichiometry 

coefficient x  even at constant burning temperatures. 
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Figure 2.13. (a) Left shows comparison of experimental and theoretical non dimensional burn rates on 

stoichiometry x [9] and parameter σ. (b) Shows the dependence of shaping parameter σ on the 

stoichiometry x used in calculation; dashed lines are the combustion limits. 

It is evident from figure 2.13(b), analysis for the dependence of ( )x , that the standard 

deviation parameter   reaches a minimum value  0.01 at x = 0.6.As shown above, the 

less 1   the more ordered is the system. Obtained dependence ( )x  (Figure 2.13) shows 

that the Ti+xSi mixture becomes more disordered as it moves away from x = 0.6. Such an 

effect of microstructure of the system on combustion process is associated with binding of 

Ti and Si particles, mixing at different concentrations, over the combustor volume. 

2.3.3.2 Relay-race mode vs. quasi-homogeneous mode 

 

For a long time there is a discussion in the literature [1-9,28], on what is the mode in 

which combustion of disperse (powder) systems, in particular the gasless combustion, 

occurs: in a quasi-homogeneous mode or in a microheterogeneous (relay-race) mode. This 

question is of fundamental importance for the simulation of combustion of such systems, 

because the well-mastered and widely-used quasi-homogeneous combustion model [48,49], 

which historically goes back to the founders of the combustion theory (Zeldovich, Frank-

Kamenetsky, Schwab et al), are based on the assumption about smooth and continuous 

distribution of temperature and other parameters in the combustion wave, and they need a 

justification as applied to combustion of microheterogeneous systems. It is easy to introduce 

a criterion of "homogeneity" of the combustion wave as applied to disperse systems. Let the 
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characteristic thickness of the thermal layer in the combustion wave be . According to the 

combustion theory of homogeneous systems [40.44], this thickness is connected with 

burning rate r  by expression 

r


                      (28) 

Obviously, the combustion wave in the powder system can be considered as a quasi-

homogeneous one, if the condition  

d                    (29) 

is satisfied or 

0l                     (30) 

where d  is the characteristic size of the particles. Criterion Eq. (29) is applicable to the 

combustion models that take into account the finite size of the particles. In the developed 

model of point hot-spots one should use the criterion Eq. (30), which with taking into 

account Eq. (28) takes the form 

10 


rl
                      (31) 

or, by the definition of the non-dimensional burning rate  : 

1                      (32) 

Thus, only if the non-dimensional burning rate is much less than unity, one can consider that 

the combustion of microheterogeneous system occurs in a quasi-homogeneous mode. In 

practice, one can speak about quasi-homogeneous mode when at least the condition 1.0  

is satisfied. According to the theory under consideration, the less shaping parameter a  or 

more the standard deviation parameter the less burning rate at the same non-dimensional 

ignition temperature  .  

                  The commencement of relay-race mechanism and combustion limit is now 

understood in terms of combustion front propagation. The mechanism for propagation of 

combustion front is of fundamental importance, now after successful demonstration of 

correlation between stoichiometry x  and standard deviation parameter of developed model, 

is analyzed with the role of internal microstructure. The developed model explains these 

combustible limits in the view of ignition time profiles (in the range [0.42, 0.48]), assuming, 

that 0.48   is not in the range of x=[0.3,1.5]. Thus, numerical calculations assumed that 

0.48   for both lower combustible limits and this determined value of ignT = 990 K. The 

existence of ignition temperature for heterogeneous systems of particles in suspension 



Chapter 2 

 

  

 46 

 

  

introduces a limit to reaction front propagation, even in the absence of losses and with 

uniform heat release. The instant at which the heat release of the active cell is just adequate 

to increase the temperature of the mixture to the pre determined ignition temperature is 

defined as combustion limit. While performing numerical calculations it is observed that, as 

time is incremented the temperature of active cell reaches critical temperature which is still 

lower than the pre determined ignition temperature.  
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Figure 2.14 Higher Ignition time profile for different Normal distributions.1=0.42(ε), 2=0.44(ε), 

3=0.46(ε), 4=0.48(ε). 

This instant is determined as numerical combustion limit of developed model. The numerical 

combustion limit for a periodic system is 0.5459, however for disordered system the 

combustion limit still further reduces and is observed to be 0.48. The reaction front cannot 

propagate through the system above the Combustion limit. Figure 2.14 shows the ignition 

time profiles of different normal disordered systems (σ=0.05 and σ=0.4) for higher ignition 

temperatures ranging from 0.42 -0.48. The periodic system and disordered system with 

σ=0.05 has similar characteristics for lower values of ignition temperature <0.42, however as 

ignition temperature increases the microstructure of system plays a dominant role in deciding 

the combustion limit at higher values of ignition temperature. 

The reaction front propagated smoothly in a quasi-homogeneous regime when the combined 

thickness of the two point source particles was much smaller than the reaction front. When 

the reaction front width was of the order of a inter particle distance, the reaction front 
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exhibited a relay-race behavior characterized by a region of concentrated heat within the 

reactive layers.                         

2.3.3.3 CMDB Propellants 

In this section the experimental data for CMDB class of propellants [10] is compared with 

the model developed. Earlier section establishes that the normal or gamma distributed 

adjacent cells in combustible systems, have additional degree of freedom and can explain 

combustion process for wide ranges of heterogeneous mixtures. Systems modeled with 

normal or gamma distribution of neighboring reaction cells are compared with experimental 

data [10] to establish accurate model and also account the affects for dynamical combustion 

properties. During experiments, the samples are comprised of selected components such as 

DNC (Dinitrocarbanilide) and CL mixed in exact ratio with a binding agent AP(Amonium 

perchlorate) or without binding agent. When ignited, the propellant burns and generates high 

temperature and exhaust products that escape at extreme speeds to provide thrust. The 

burning temperatures and burning rate of such propellants can change over broad range 

either by adding binding agent (AP) or by changing the compositions of components; the 

mechanism of heat release during combustion process of such propellant is not altered. In 

such system, the groups of active cells play the role of reaction cells, while the initial 

components are capable of reacting chemically. Tign is melting point at which the cells 

commence reacting. The values of burning temperature and burning rate of CMDB 

propellants with binding agent or without binding agent are collected from the work [10]. 

Ignoring the heat losses, calculated burning temperature of propellant mixtures are 

recognized as adiabatic temperature (Tad) with reference to developed system. Figure 2.15(a) 

includes the data from the work [10], with burn rate and burning temperature on the axis, for 

two propellants. The burn rate for CMDB propellants varies with percentage of components 

and also by adding binding agents. The first propellant comprises of 60% of DNC and 40% 

of CL without the binding agent and other propellant comprises of 50% of DNC and 40% 

of CL with AP as binding agent. It is observed that burn rate decreases with addition of 

binding agent, particularly at 690k.  

               The treatment for experimental results, as shown in [10], is performed in the 

coordinates of ε-ω . In doing so it is considered that critical temperature, noticed in 

experiments, correspond to the critical values of the theoretical parameters such as εcr and ωcr. 

In the view of developed model the critical ignition temperature is established at 0.48; these 
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parameters are considered as critical parameters for the disordered system. Assuming that 

minimum burn rate and burning temperatures, determined in the experiments, correspond to 

the critical regime of combustion for real system. The value cr =5 and cr =5.6 

respectively were used for the mixtures DNC+CL and DNC+CL+AP in these calculations. 

 

Figure 2.15.(a) Plot for burning rate versus burn temperature for CMDB propellants with and without 

binding agent, based on data of work [10]. (b)  Comparison plot for experimental and theoretical 

dependencies ω(ε). Symbols are treated experimental data [10]; solid lines 1-4 are the theoretical 

dependence, lines 2&3 represents normal distributed system: 2) σ=0.2886: 3) σ =0.408; lines 1&4 

represents gamma distributed system:1) a =12; 4) a =6.  

It is enough to assume that the change of burning rate with change in burning temperature 

for combustion of propellants is associated with change of parameters either σ in case of 

normal distribution or a for gamma distribution which describes system internal 

microstructure considering uniform identical reactant consumption. The data [10] is now 

processed in variables   . The numerical results calculated for appropriate parameters of 

σ,a at different ignition temperatures ε, is now superimposed in figure 2.15(b). Solid lines 1-4 

are the theoretical dependences )( , calculated by using expressions Eqs. (24), (25) taking 

into account the matched dependence ( ) . Line 1 and 4 is obtained by utilizing the gamma 

distribution (eqn.(10) and (15)) of neighboring reaction cells with parameter a=12 and a=6 

respectively. Line 2 and 3 is obtained by utilizing the normal distribution of neighboring 

reaction cells with parameter σ=0.2886 and 0.408 respectively.  
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               Combustion of CMDB propellants releases high amount of energy, which 

propagates throughout the system, even at low burning temperatures. Thermal reaction 

below 670k are like streak of lightening and are complex to analyze. However for the 

burning temperatures above 670k the developed model (Line 2 and 3) show close agreement 

when compared to that of with Line 1 and 4. The minute aspect of controlling internal micro 

structure, by normal distribution, allowed for accurate explanation of data [10] .The data [10], 

processed in variables     in Figure 2.15(b), shows that burn rates for CMDB propellants 

changes with ignition temperature either by addition or absence of binding agent (AP). This 

binding agent corresponds to standard deviation parameter, of developed model, employed 

for describing system’s internal microstructure; this is evident from figure 2.15(b). Now it is 

apparent that present model developed with normal distribution of neighboring reaction cells 

is accurate for describing the combustion process of heterogeneous mixtures.  

2.3.3.4 Thermite systems 

The present section illustrates the comparison of experimental data for combustion of 

thermite systems with theoretical model developed in earlier section. In due process the 

effect of distribution of heat release on combustion limit of thermite mixtures is established. 

The work of authors [47] investigate that the burning rate changes with burning temperature 

for a broad range by altering the inert diluter and percentage of inert diluter; in doing so the 

phenomenon of heat release in combustion process is not altered.  

            As established in above sections, by developed model, the noticeable oscillations in 

those system commence at ( )cr developed =0.4; the classification of thermite mixtures from the 

work of the authors [47] is performed based on their inflammability limits. Thus the thermite 

systems from the work [47] is referred into two: ( ) ( )cr Work cr developed   , ( ) ( )cr developed cr Work   . 

Here the thermite systems with ( ) ( )cr developed cr Work  is considered. Figure 2.16(a) comprise 

the data of work [47] (2Fe2O3+3Zr+n*ZrO2, 2Cr2O3+3Zr+n*ZrO2, Cr2O3+2Al+n*Al2O3), 

processed in co-ordinates of burn rate and burning temperature. Neglecting heat losses and 

considering uniform heat release of reaction cells, the calculated burning temperature of the 

mixtures is identified as adiabatic temperature ( adT ) of the heterogeneous mixture. The 

average burn rate, during entire time of combustion process of different heterogeneous 

mixtures, determined in the work [47]; corresponds to theoretical average burning rate Eq. 

(25).  The arrows in Figure 2.16(a) correspond to commencement of oscillating mode for 
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combustion process of different thermite mixtures. Treatment of experimental data [47] has 

been performed in non dimensional co-ordinates    as shown in previous sections. Hence 

theoretical values of the critical parameters such as cr  and cr  are assumed as 

commencement of oscillating modes of combustion, practical in experiments. As established 

above, by developed model, the noticeable oscillations in those system commence at cr

=0.42; and is considered as critical parameters of developed model. Assuming the critical 

values of rate of burning crr  and burning temperature
cradT , determined in experiments, 

correspond to the commencement of oscillating modes of combustion process for a actual 

system.  

 

Figure 2.16. (a) Correlation of burning rate and burning temperature for several thermite systems, 
based on data  of work [47].  The arrows shows the critical points, which correspond to beginning of 
oscillatory combustion modes.  (b) Comparing of experimental and theoretical dependencies ω(ε). 
Dots are the treated experimental data [47] :solid lines 1-2 are the theoretical dependence for identical 
heat release ,  for normal distribution: lines 2 correspond to calculations for σ=0.98 and line 1 
correspond to gamma a=0.7.  

                    

Then eqn. (27), in accordance with figure 2.8 and 2.11, critical non-dimensional burning rate 

)( crcr    depends on the standard deviation of neighboring reaction cells; this implies 

that cr  depends on the system microstructure. Experimental data [47] are treated using 

expressions (26)-(27), similar to method shown in earlier sections, are shown in figure 

2.16(b). Line 2 (Figure 2.16(b)) show the theoretical dependence for different values of

const  . Line 1 shows the theoretical burn rates obtained for gamma distribution (a=0.7) 

of neighboring reaction cells.  It is assumed that the change of non dimensional ignition 



Chapter 2 

 

  

 51 

 

  

temperature ( ) in diluting the system mixture is associated with change of the standard 

deviation parameter  or shaping parameter (a), which describe the system microstructure 

considering uniform heat release at all cells. Furthermore it is considered that the 

combustion process of thermite mixtures from work [47] can be explained by the respective 

dependence ( ) or a(ε).  The dependence ( )  is coordinated for the condition of 

concurrence of theoretical dependence )(  calculated by developed model with the 

experimental data [47] (Figure 2.16(b)). Such dependence ( )  is shown in figure 2.16(b). 

Theoretical dependence )( , is calculated by using expressions Eqs. (24), (25) in the view 

of matched dependence ( ) , is shown in figure 2.16(b) (line 2); it describes experimental 

data [47] accurately for broad class of thermite mixtures. The value cr =0.25 was used in 

these calculations. Solid line 2 is the result of disordered system described with normal 

distribution of reaction cells and line 1 is from gamma distribution (a=0.7). The chi square at 

higher ignition temperatures (ε>0.32) has been calculated for lines 1 and 2 with respect to 

experimental data; and we achieve a chi square value of 0.054 for line 2(normal distribution) 

and 0.523 for line 1(gamma distribution a=0.7). The data [47], processed in variables   , 

shows that combustion becomes impossible at 0.49...0.5  ; this reality correlates well with 

the theoretical results obtained by developed model for uniform heat release at all reaction 

cells. 

 

2.3.3.5 Quasi-Arrhenius’ macrokinetics 

The experimental data for all termite systems considered [47] (Fig. 12)  can be approximated 

(fitted) by the single dependence 

  14exp6.67                           (33) 

although, these systems essentially differ not only from one another by their properties, but 

also they are different by contents of diluter within a system. Taking into account that, 

usually, inad TT  , the dependence Eq. (33) can be considered as the Arrhenius’ one, that 

is, adRTE
e ef~
 , with an effective activation energy of macro-process 

)(08.9ef inign TTRE  , where R is the universal gas constant. A similar dependence of 

macroscopic burning rate on burning temperature can be obtained theoretically in 

homogeneous combustion model with Arrhenius’ microkinetics [40,44]. Note that the 

obtained Arrhenius’ dependence of macroscopic burning rate of the system on its adiabatic 
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temperature is not connected with Arrhenius’ micro kinetics of chemical reactions in heat 

sources. The obtained result shows that Arrhenius’ macro kinetics which is usually detected 

in experiments can be connected with an existence of threshold temperature ignT  and a 

heterogeneous nature of the system under consideration and it can have purely a thermal 

nature. 

Section II Disordered Heat release (qi) 

In the work [47], for different thermite mixtures of Fe2O3, it is observed that two thermite 

mixtures (Fe2O3+2Al+n*Al2O3, 2Fe2O3+3Ti+n*TiO2) have the inflammability limit less than 

( )work <0.4, and the steady-state mode of combustion is seen for further lower values of ε. 

Above developed model with an assumption of uniform heat release (
iq  ) at all reaction cells 

could not explain for the thermite systems that have lower combustion limits. Currently no 

such combustion models exist that can quantitatively explain the change of combustion limit 

for thermite mixtures. Unlike the above model, where the heat release is considered identical 

for all cells, the present section analyzes the effect of  randomizing the heat release at all cells 

on combustion limit. It is established from the above developed model with normal 

distribution of neighboring reaction cells is far more accurate with experimental data, here in 

this section the normal distribution for positioning neighboring reaction cells with 

randomized heat release at each cells is considered. The system modeled with gamma 

distribution of neighboring reaction cells and randomizing the heat losess , the reaction front 

does not propagate even at lower ignition temperatures(ε<0.05). Hence the gamma 

distribution cannot be used in robust modeling of combustion process that considers 

randomizing heat release. Note the average heat release at each cells is maintained as unit. 

Heat release in the developed model is also viewed as the consumption of reactant. 

Randomizing the heat release not only allows us to study the combustion limit but also 

reveals the nature of distribution of heat releases of neighboring reaction cells. 

                 An identical heat release at all point sources was assumed for the above numerical 

calculations. However there can be a possibility of unequal heat release or unequal 

consumption of reactant at different cells. The heat release qi is randomized and its effects 

on the combustion are studied in the present section. The heat release distribution, with two 

extreme cases has been considered. The system with small spread in the distribution of heat 

release is described by a normal distribution (qi ϵ [0.7-1.2]) and the more spread by a normal 
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distribution (qi ϵ [0-7]), however the average heat release is maintained at one. The modeled 

systems are calculated numerically and analyzed for their effect on combustion process. It is 

found that the small spread of distribution of heat release doesn’t show considerable effect 

on combustion process and the combustion process is same as with uniform heat release. 

However as the degree of randomizing the distribution of heat release increases a 

considerable change in the process of combustion of such systems is observed. Figure 2.17 

shows the ignition time profile for the microstructure of system described by σ=0.05 and 

σ=0.4 and with high disordered heat release.  
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Figure 2.17. Comparison of Ignition time profiles for Identical heat release (1,2,3) and disordered heat 
release (1(a),2(a),3(a)) (qi).1=0.15(ε),2=0.25(ε),3=0.35(ε).  

 It can be seen that the combustion process is affected by the disordered heat release. With 

the inclusion of the random heat release the burn front moves slower and combustion stops 

are observed. The affects are more pronounced at higher ignition temperatures and higher 

disorder of the heat release. Figure 2.18 shows the comparison of the burn rate obtained for 

a system with high disorder in the heat release with identical heat release. As the randomness 

in heat release increases the burn rates decreases with increase in ignition temperature. It can 

be observed that at higher ignition temperatures, the decrease in the burn rate is more when 

compared to an identical heat release. At any given ignition temperature, a system described 

by a low degree of randomness in the position of its cells and higher degree of disorderness 

in nature of heat releases, shows a higher decrease in the burn-rates. The combustion limit 
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for the present disordered system with randomizing heat release is still further reduced to 

0.40 from 0.48.  
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Figure  2.18. Comparison of Percentage of burn rates for identical (Boxes) and disordered (Circles) 
heat release. 

And  oscillations of ignition time profiles at ε=0.35 is detected .Numerical experiments show 

that the combustion process of a system is affected by randomizing the heat release that 

leads to slow heating of system. Thus the distribution of heat release in the system affects the 

combustion process  and hence cannot be neglected while modeling the combustible 

system.As the clusterization of heat release increases then the combustion process differs to 

a great extent and this increases with increase in ignition temperature. Heat release study 

would be helpful for robust modeling of combustible system which not only accounts for 

microstructure of system but also the different possibilities of heat releases.  

2.3.4 Comparison With Thermite systems 

Present section compares the experimental data for thermite mixtures [47], that consist of 

powder components (Fe2O3+2Al+n*Al2O3, 2Fe2O3+3Ti+n*TiO2) mixed with inert diluter, 

with theoretical model developed (section 3.2) in the view of randomizing of heat releases. 

Powdered components are capable of exothermic transformation. The temperature for 

burning the heterogeneous mixtures and their rate of burning can be altered for a broad 

range by changing the diluter and also by the amount of inert diluter; in doing so the lower 

inflammability limit in combustion is changed. The values of burning rate and burning 
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temperature of heterogeneous mixture that contain different inert diluter and different 

percentages of inert diluter are collected from the work [47]. Neglecting heat losses and 

considering randomizing distribution of heat release, the burning temperature of the 

heterogeneous mixtures is identified as adiabatic temperature ( adT ) of the mixture. It is 

established above, from the developed model, that the detectable oscillations in such 

mixtures (randomize heat release) begin at cr =0.35; the thermite systems from the work of 

the authors [11] are classified based on their combustion limits. Present section refers to 

thermite mixtures from the work [11] for which ( ) ( )cr Work cr developed   .Figure 2.19(a) contains 

the data of work [47] (Fe2O3+2Al+n*Al2O3, 2Fe2O3+3Ti+n*TiO2), performed in the co-

ordinates of burn rate and burning temperature. The arrows in figure 2.19(a) correspond to 

the beginning of oscillating (critical) modes of combustion of thermite mixtures. Treatment 

of experimental data [47] is performed, similar to method in earlier sections, in non 

dimensional co-ordinates of   . Hence it is considered that commencement of oscillating 

mode of combustion process, noticeable during experiments, is associated with critical values 

of theoretical parameters such as cr  and cr .  

 

Figure 2.19. (a) Correlation of burning rate and burning temperature for thermite systems having lower 
combustion limits, based on data  of work [47].  The arrows shows the critical points, which 
correspond to beginning of oscillatory combustion modes. (b) Comparing of experimental and 
theoretical dependencies ω(ε). Symbols are the treated experimental data [47] :solid lines are the 
theoretical dependence  for randomized heat release and normal distribution with microstructure 
described byline 1 σ=0.05 and by line 2 σ=0.40. 
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   As established above the noticeable oscillations of such heterogeneous mixture commence 

at cr =0.35; this parameter is considered as critical value of inflammability limit of 

developed model. Assuming critical values of rate of burning crr  and burning temperature

cradT , noticeable during experiments, corresponds to commencement of oscillating modes 

of combustion in an actual system. Experimental data [47] now converted by using equations 

(26)-(27) is shown in figure 2.19(b). Lines 1-2 (Figure 2.19(b)) show for different values 

const    and randomized qi.   It is believed that the changing of non dimensional ignition 

temperature ( ) in dilution of thermite mixtures is associated with change of standard 

deviation ( ), which describe the system internal structure. And also assume Change of 

combustion limit is associated with randomizing of distribution of heat release. Moreover the 

thermite systems and their combustion limit can be described by the dependence
iq  and

( ) . The value of parameter 
iq  and ( )  is matched from the concurrence of numerical 

(developed model) burn rates )(  with the experimental data [47] (Figure 2.19(b)). Such 

dependence of ( )  and 
iq  

is shown in figure 2.19(b) (line 2). Theoretical dependence

)( , in view of the matched dependence of parameters ( ) and
iq , is shown in figure 

2.19(b) (line 2); it appropriately explains the experimental data [47] of thermite mixtures 

having lower inflammability limits. The value cr =0.26 was used for above calculations. 

Experimental data [47] allows estimating an inflammability limit of ignition temperature ( ) 

for each mixture, beyond which a stable combustion is not possible. The experimental data 

[47], now converted in the coordinates of   , shows that stable combustion is not possible 

at values 0.35...0.4  ; this reality agrees well with numerical results of developed model 

obtained by randomizing distribution of heat release. 

2.4 Conclusion 

The results show that the use of the gamma or normal distribution for modeling of 

microheterogeneous systems allows describing peculiarities of combustion of solid mixtures 

with wide variations in their internal structure, from periodic, which correspond to a   

or 0.05    to random homogeneous disordered systems, which correspond a =1 or 

0.50  , and ending with clustered systems which correspond to 15.0  a  or 0.5 1 

. An additional "degree of freedom", the shaping parameter a , introduced in the model 

allowed reproducing theoretically the experimental data for a wide range of pyrotechnic 

mixtures, as well as explain the previously unexplained from the point of view of the theory 
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of combustion of homogeneous systems the experimental data on combustion of Ti+xSi 

mixtures. Only assumption that the burning rate depends on the structure of the mixture and 

can change with changing of the structure of mixture even at a constant burning temperature 

allowed describing the dependence of the burning rate on stoichiometry x , including, in the 

range with a constant burning temperature. Different combustion limit for thermite systems 

is explained in the view of randomized heat release. 
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CHAPTER 3 

Correlation between Discrete Probability and Reaction 

Front Propagation Rate in Heterogeneous mixtures 

            Present chapter describes a powerful correlation between the discrete probability of distances of 

neighbouring cells and thermal wave propagation rate, for system of cells spread on a one dimensional chain. 

A gamma distribution is employed to model the distances of neighbouring cells. In the absence of an analytical 

solution and the differences in ignition times of adjacent reaction cells following non-Markovian statistics, 

invariably the solution for thermal wave propagation rate for one dimensional systems with randomly 

distributed cells is obtained by numerical simulations. However, such simulations which are based on Monte-

Carlo methods require huge computing resources. For several one dimensional systems, differing in the value of 

shaping parameter of the gamma distribution, it is observed that the average reaction front propagation rates 

obtained by a discrete probability between two limits, shows excellent agreement with those obtained 

numerically. With the upper limit at 1.3, the lower limit depends on the non-dimensional ignition 

temperature. Additionally, this approach also facilitates the prediction of burning limits of heterogeneous 

thermal mixtures. The proposed method completely eliminates the need for laborious, time intensive numerical 

calculations where the thermal wave propagation rates can now be calculated based only on macroscopic 

property entity of discrete probability. 

3.1 Introduction 

Physics research in heterogeneous combustion [1-13] mainly investigates the effects of 

change in microscope entities of internal structure of a mixture on reaction kinetics and 

propagation, stability of thermal wave. Heterogeneous mixtures with voids have wide ranges 

of ignition behaviour, performance, reaction zone characteristics, internal microstructure and 

other discontinuities [7, 13-16]. Velocity of reaction front or burn rate of a system is the 

quantitative and crucial parameter in describing the average behaviour of heterogeneous 

combustion process. Such experimental study for combustion of heterogeneous mixtures 

involves huge cost, high speed micro video recorder [5-7] and risk factor. In such situations 

the mathematical modelling and simulation of combustion of mixtures shown in chapter 2 

[13-18] can play a crucial role in understanding the effect of heterogeneities. Also the 

modelling of heterogeneous combustion has inherent safety and wide operational features 

that make them attractive choices for a broad range of applications, including combustion of 

coal, solid propellants, aerosols, thermite mixtures etc. Combustion process of 
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heterogeneous mixtures shown in chapter 2 is modelled as instantaneous ignition and 

burning of reaction cells arranged randomly on one dimensional chain [15-16]. Such Monte 

Carlo simulation [15-16, 19] of heterogeneous combustion process is performed by repetitive 

random sampling of neighbouring reaction cells. Numerical experiments and theoretical 

studies on heterogeneous combustion process [8-10, 15-16] had revealed the crucial role of 

disordered structure in explaining the burning of actual heterogeneous mixtures. Numerical 

calculation of burn rates is obtained by sequential calculations of ignition times of reaction 

cells. Heterogeneous mixture performance, role and vulnerability have been successfully 

modelled at different stages [14-16] in chapter 2. Nevertheless mathematical modelling and 

numerical simulations of such systems is complicated on account of multiple reasons such as 

irregular voids, mixing, compressing and packing of mixtures influences and unstable 

reaction zones. In addition the computational time for simulation and quantifying the 

reaction front propagation rate of heterogeneous mixtures is tedious process and time 

consuming. While performing the numerical calculations, the number of cells (particles), 

wide ranges for distribution of arranging cells and number of realizations of distribution are 

very crucial. The optimum solution to these parameters is obtained only after rigorous 

numerical calculation. For example, in chapter 2 the input parameters like ignition 

temperature (ε), number of burnt and unburnt particles and increment of time (dt) are 

initialized and the combustion process is simulated using governing equation (2) from 

chapter 2. Burn rates are calculated using equation (2) and (3) from chapter 2 for different 

random distributions of cells. Each burn rate in the figure 2.8 from chapter 2 (represented by 

symbols) is a result of repeated calculations for 40 realizations (dependent on degree of 

randomness) of random distributions of neighbouring cells. This process of obtaining burn 

rates, is repeated for different values of shaping parameter (a), requires dedicated huge 

computing resources.   

    Theoretical analysis performed in chapter 2 gives the relation between burn rates of 

periodic and disordered system.  The normalized burn rate (
     

     
) of disordered system 

with respect to periodic system is established as always less than one by equation (15) from 

chapter 2. And Eqn. (11) and (15) from chapter 2 can be used for calculation of burn rate of 

disordered system with knowledge of burn rate of an ordered system. However eqn.(15) 

from chapter 2 involves the parameter m termed as correlation factor between neighbouring 

distances and delay in ignition times. Here parameter m can only be obtained after calculation 

of ignition times. This method of calculating the burn rate is tedious and time taking as 
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simulation of combustion process involves numerous realizations of disordered micro 

structures.  Numerical experiments of discrete combustion model illustrated in chapter 2 are 

successfully compared with the actual experimental results [8-10]. Nevertheless, numerical 

and theoretical methods of obtaining burn rates of a disordered system involve huge 

computational resources. Hence it is of academic interest to find a numerical technique, 

based on statistics and the knowledge gained from numerous calculations performed in 

chapter 2, that can reduce the computational time. Thus invented technique once 

formulated, tested and validated with established theoretical and experimental results [15-16] 

can overcome the computational aspects faced by the mathematical modeling of combustion 

physics. The obtained agreement between the results of developed numerical technique and 

established mathematical model augurs well, at different values of shaping parameter (a), for 

numerical technique developed for the heterogeneous flows under consideration. Present 

chapter shows that the couple of hours of traditional computing can now be reduced to a 

time for finding cumulative count of effective reaction cells in the range around the mean. 

Reduction in the huge experimental and computational cost, first on prediction of burn rates 

for wide ranges of mixtures and providing hands on experience for combustion designers are 

the advantages of such techniques.    

3.2 Motivation 

In chapter 2, the statistical and dynamic behaviour of discrete combustion waves in a one 

dimensional random system are studied. The system was modelled as one dimensional chain 

of cells with a specific ignition temperature. The position of the cells was assigned by 

modelling the distances between the neighbouring cells by either uniform, normal or gamma 

distribution. Further, the cells were connected by thermal bridges characterized by thermal 

conductivity k, linear mass density   and specific heat c. The burn front propagation rate, 

hence forth referred to as burnrate, was determined numerically by calculating the burn time 

of all the cells of the system. One of the important results eqn. (15) shown in chapter 2 was 

that the burnrates of a random system were always less than the burnrate of a periodic 

system with unit spacing [15-16]. The average spacing of the cells in a random system was 

also maintained at unity to facilitate a meaningful comparison. However, such numerical 

simulations demand huge computing powers for couple of hours to days depending on the 

value of ignition temperature and the time step. As the analytical solution [15-16] for a one 

dimensional periodic system is well known, it is convenient to discuss the burnrate of a 

random system w.r.t to a periodic system. It is important to note that the burnrate of random 
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system w.r.t to periodic system at any ignition temperature is always less than unity and can 

be expressed as a ratio of the gamma function Eq.(15) of chapter 2. Combining this result, 

with the fact that burn (ignition) times follow a non markovian statistics, a conjecture is 

made that the normalized burnrates can be obtained by calculating discrete probability with a 

careful choice of limits of the integral. In this chapter, the one dimensional random (gamma 

distribution) system used in chapter 2 [16] is considered. The results obtained by the 

proposed method are compared with burn rates obtained by the numerical simulations [16].  

 

3.3  Statistics of ignition delay times 

In this section the random process i (delay in ignition times) and the difference of actual 

random process i  from markovian one, i.e, when there is a correlation between the ignition 

delay times i  for the different reaction cells is analyzed and demonstrated. Denoting

 iiz , it is obtained 
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where jiij RR   is the correlation function for discrete random process i ; 1iiR ; 

0ijR  at  ji , 
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Using eqn. (15) from chapter 2 the eqn. (3) is written as 
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where the parameter m  is determined by the correlation equation

27.023.201.02.2 aam   obtained numerically in chapter 2. Because the discrete 

random process iL  is uniform one, the discrete random process i  which induced by them 

will be uniform one too. This means that )( ijfRij  . Denote ijk  , then one can 

write  

kkiiR ,               (5) 

where the correlation function k  has the obvious properties 
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kk                     (6) 

10  , 0lim 


k
k

 . 

After simple transformations while taking into account Eqs. (5) and (6), for standard 

deviation Eq. (1) one obtains 
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Taking into account eqn. (22) from chapter 2 and eqn. (4), the relative standard deviation of 

the system’s burning time is determined in this case by the expression 
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A case kk 0  , where ik  is the unit matrix, corresponds to Markov random process, for 

which 1)( N  and Eq. (8) turns into 
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 Function )(N  for several values of parameters a  (shaping parameter of gamma 

distribution) and   is shown in figure 3.1. For the calculations of function )(N , the 

correlation function k  has been determined on the results of numerical solution of eqn (2) 

from chapter 2. Analysis of correlation function k  shows that even at 1k  it drops down 

to ~0.05 and at further increasing in k  it oscillates in the range 05.005.0  k . It is 

necessary to note that analogous correlation function for distance between neighbouring 

reaction cells oscillates in the same range. This is connected presumably with peculiarities of 

work of pseudorandom number generator [16]. Detailed analysis has shown that local 

oscillations of correlation function k  for random process i  repeat completely the 

oscillations of degree of correlation between i  and iL . For N  expression equations 

(8) and (9) can be approximately rewritten in the form 
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Figure 3.1. Function )(N  for different values of parameters a  and  . Lines 1 and 3 -  =0.05, lines 

2 and 4 -  =0.4; lines 1 and 2 - a =1, lines 3 and 4 - a =15. 
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do not depend on N . Analysis carried out has shown that discrete random process i , 

...3,2,1...,i  is weakly markovian one and approximately it can be considered as non-

markovian process. Theoretically, a distinction of the process under consideration from 

Markov random process one can take into account in a next approximation in solution of 

1( ) exp( )
( )

a
aa

p L L aL
a

 
  

in which effect 1k  on k  is taken into account. For 

example, in simple case the Eq.  (2) from chapter 2 can approximately be rewritten as follows 
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and burning rate is determined from a transcendent equation with taking into account 

expression Eq. (11). Obviously, the random process k , described by equation (11), will be a 

non-markovian, although the random process kL  is itself markovian. 

3.4 Results  

Gamma distribution among the distances between neighboring reaction cells was employed 

to assign the position of the particles. A detailed description of the one dimensional system 

under consideration can be found in chapter 2. The probability density function (pdf) of the 

gamma distribution is given as  

1( ) exp( )
( )

a
aa

p L L aL
a
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

 

where a  is a shaping parameter and    is the distance between neighboring reaction cells. 

The shaping parameter 'a' of the distribution allows for description of wide range of 

heterogonous systems ranging from random (small a) to periodic systems (large a). The 

average of the distribution is always maintained as unity to enable a meaningful comparison 

with a periodic system with unit spacing. Figure 3.2 shows pdf for gamma distribution for 

two different values of shaping parameter, a. It can be observed that the distances between 

the neighbouring cells show a smaller spread for higher value of a. Figure 3.2 shows the 

superimposed vertical lines for the lower (dashed lines) and upper limit (solid line) for two 

different values of a (shaping parameter) and two values of ignition temperature. In the 

proposed approach, the normalized burn rates (normalized w.r.t. to a periodic system for 

same ε) are obtained by calculating a discrete probability between the limits ul the upper limit 

and ll the lower limit. The cells whose neighbouring distances fall in the ul and ll is referred as 

'cells in the range'. 

 The proposed prescription for the calculation of the burnrate is  

               
     

     
                                     (12) 

where       and       are burnrates for a random and periodic systems respectively at 

ignition temperature  . Probability, pr with zero as lower limit, is a monotonically non-

decreasing function and can take values between zero and one. As mentioned earlier, the 

ratio of burnrates is always less than unity. 
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Figure 3.2. Probability distribution function for gamma distribution of the distances between 
neighboring hot spots (cells) with different values of shaping parameter. Straight lines for lower and 
upper limits represent the schematic representation of novel method.  (a) a=1  (b)  a=20. 

 

Discrete probability with lower and upper limits in the range of 1 (average spacing) is 

considered for calculation of the normalized burn rate. For higher values of ignition 

temperature, the lower limit shifts to the right thereby reducing the discrete probability in 

agreement with the decreasing values of the burnrates. Initially, a coarse search shown in 

figure 3.3 was performed to locate the intervals for which the probability is same as the 

normalized burn rates. 

After this, the lower limit was fixed and a least square approach was followed to find out the 

optimum value for the upper limit. This was followed by optimization of the lower limit by 

fixing the upper limit for all the gamma distributions in the range of one to twenty integral 

values. Each symbol in figure 3.3 is obtained as chisquare value for 20 different shaping 

parameter of gamma distribution. The minimum value of chisquare is taken as the optimized 

lower limit for each ignition temperature. This step is repeated for different ignition 

temperatures. It is observed from figure 3.3 that the optimized lower limit increases with 

increase in ignition temperature. Note the value of optimized lower limit for particular 

ignition temperature is independent of shaping parameter; however it changes with change in 

ignition temperature. 
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Figure 3.3 Plot for chisquare values at different values of lower limit on ignition temperature. 

 

The optimum values for lower limit was in the range of 0.35 to 0.82 and upper limit was 

fixed at 1.3. Figure 3.4 shows the dependence of lower limit on the ignition temperature. The 

dependence of lower limit on ignition temperature is modeled with a exponential function as  

                                                                                 (13) 

 

Figure 3.4 Functional dependence of lower limit on ignition temperature. Circles represent the 
numerical values obtained through methodology and solid line represents the trend line.  
 

Figure 3.5 shows the ratio of burnrates obtained by developed model (represented by circles) 

using eqn. (13) and (12) superimposed on the results obtained from numerical analysis 
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(represented by solid line). Excellent agreement can be seen at different values of ignition 

temperatures and for wide range of systems characterized by the shaping parameter a. This 

correlation becomes a powerful tool as for an ignition temperature there exists a single lower 

limit for every gamma distributed system with upper limit fixed at 1.3. A similar agreement is 

also observed for other ignition temperatures considered.   
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Figure 3.5 Comparison of the burn-rates obtained by the proposed method represented by ‘o’ with the 
numerically calculated values from chapter 2 represented by solid line. Solid line is compared and 
validated with experimental results in chapter 2. (a) ε=0.10 , (b) ε=0.20 (c) ε=0.30 (d) ε=0.40. 
 

Hence the problem of calculating the burnrates now reduces to three simple steps - 

1. Given the ignition temperature, calculate the lower limit ll  using Eq. (13). 

2. Calculate the discrete probability of the gamma distribution between ll and 1.3. 

3.  Multiply discrete probability with       which is a known value. 

                           

Eqn. (11) from (chapter 2) [16] provides a relationship between the ignition temperature and 

the correlation factor, m, between distances and times. This relation is employed to derive 
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Eq. 13 for the ratio of the burnrates. Using eqn. (13) and substituting in eqn. (11) of chapter 

2, a relation between ll and m is obtained as - 

                                                         (14) 

where m represents correlation between the differences in the adjacent cell spacing and 

differences in their corresponding ignition times. The striking similarity between the results 

obtained by using                  can be observed. It should be noted that m is a result of 

the knowledge of complete information on positions and times of ignition. And its use to 

obtain the lower limit for obtaining the reaction front propagation rates shows the 

robustness of the proposed correlation between burnrates and cumulative probability. 

The knowledge of        can further be extended to estimate the limiting ignition 

temperature beyond which the thermal wave cannot be propagated in the system. The 

existence of an ignition temperature for heterogeneous systems of particles in suspension 

introduces a limit to reaction front propagation, even in the absence of losses [7,15-16]. This 

limit is defined as the condition when the heat release of the entire domain of particles is just 

sufficient to increase the bulk temperature of the mixture to the particle ignition temperature. 

Equivalently, it amounts to stating that the adiabatic temperature is equal to the ignition 

temperature [14]. The combustion limit for a periodic system [7, 14-16] is obtained as 0.5459 

and 0.48 for a random [16] through numerical calculations. Numerically the combustion limit 

is calculated as that ignition temperature beyond which the thermal wave does not propagate 

throughout the system. This method of finding the limit is time consuming as it demands the 

increment of the ignition temperature in very small steps and check if the thermal wave is 

capable of passing through the entire system or it ceases to propagate at a particular point on 

the chain as the temperature cannot attain the required ignition temperature. Again, this leads 

to complete elimination of the cumbersome time consuming numerical calculations, where 

ignition temperature must be iterated, in very small steps, to check where the propagation of 

heat wave is impossible. It is also worth noting here that as the magnitude of the ignition 

temperature increases, the computation time also increases. The function dependence of ll 

on the ignition temperature can be exploited to calculate the combustion limit of a system. 

Limit ll 1, in eqn. (13), enables the estimation of the combustion limit.  Accordingly, the 

combustion limit is 0.48 according to this prescription, which is excellent agreement with the 

value obtained from numerical calculation. 
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3.4.1 Theoretical Considerations 

In this section the theoretical basis for the methodology that was presented to obtain the 

burnrates using discrete probability is discussed. As mentioned in earlier section, the 

calculation of complete time history of the system is very costly computation. The average 

burnrate is defined as  

) /( )
ik k i k ix x t t    

 

where  
0x x l
 

is non-dimensional  distance between neighboring cells and t 

(  2

0t t l
 

)is non-dimensional ignition time of cell.  

The ratio of burnrates of random system described by gamma distribution, to periodic 

system is given by eqn. (15) from chapter 2. Considering the eqn. (15) from chapter 2  
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where r, p are burnrates for a random and periodic systems respectively and a is the 

shaping parameter.  Eq. (15) can be equivalently written as (shown in chapter 2) 

1
r p mL
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where <Lm> ( = E[Lm]) is the expectation value of Lm. From the definition of expectation 

value  
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For c=1(mean of distributing reaction cells is 1), which reduces to  
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In the context of the proposed approach, the above expression can be written by suitably 

choosing the limits of the integral as 

( )

( )

ul

m

ll m

L P L dl
 

   
  
  

However, the use of m invariably needs the numerical calculation of the ignition times of the 

all the cells of the system. As mentioned in the earlier section, in the proposed method the 

lower integral limit has a dependence on   with the upper limit fixed at 1.3 -  

( ) ( )

( )

( )
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r p
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P L dl  



 
 

In general, the discrete probability is always less than or equal to unity and it is simpler to fix 

one of the limits and vary the other limit. As seen in the earlier sections, the upper limit is 

held constant for the ignition temperatures and the lower limit is modelled as a function of 

ignition temperature. 

3.5 Conclusions  

A simple and yet powerful correlation has been established between the burnrates and the 

ignition temperatures. One dimensional heterogeneous system is of interest in various fields 

and prediction of burnrates involves the tedious numerical calculation of the individual 

burntimes. The correlation discovered in this work completely eliminates the need for these 

costly computations and the problem is reduced to finding the discrete probability of pairs of 

cells that are separated between two limits. The upper limit for finding the discrete 

probability is fixed and the lower limit is modeled as a function of the ignition temperature. 

While it should be noted that other correlations leading to a similar answer may not be ruled 

out but what has been discovered is extremely helpful in reducing the computation time 

required for calculating the burnrates. Present method also augurs well for the systems with 

normal distribution of adjacent cells. In the case of normal distribution of adjacent cells the 

value of constants in lower limit functional dependence change. 

 

(16) 
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CHAPTER 4 

Role of Heat Loss on the propagation limits of reaction 
front of heterogeneous mixtures 

A one dimensional discrete model for heterogeneous mixtures that involve heat loss is developed in present 

chapter. Theoretical study and numerical experiments are performed using the developed model to analyze the 

propagation of combustion front. Each reaction cell, characterized by heat parameter (β), is arranged on a one 

dimensional chain either in periodic or disordered manner. The dynamic behaviour of an internal micro 

strucuture of a periodic system at unstable modes of combustion is analyzed with inclusion of heat loss (β>0). 

Reaction cells in disordered system are arranged by probability density function of gamma distribution. Wide 

ranges of disordered system are obtained by changing the shaping parameter (a) of gamma distribution. 

Results from numerical experiments suggest that the heat loss in the actual system does not affect the burn rate 

although plays a vital role in deciding the combustion limit; and is evident in the case of combustion of actual  

heterogeneous mixtures (2Cr2O3+3Zr+n*ZrO2, Cr2O3+2Al+n*Al2O3) [12]. Heat loss in the system 

leads to decrease in thermal runaway and retards ignition process affecting the combustion limit. Matched 

combustion limits for heterogeneous mixtures are obtained numerically by developed model. 

 
4.1 Introduction 

Heat energy released from the combustion process either results in enhancing or retarding 

the burning process [1-4]. Propagation of combustion front in actual combustion process is 

always accompanied by heat loss [1], due to ambient conditions. Heat loss results in retarding 

of the combustion process. Heat gain is observed in situations where chemical reactions 

occur with production of heat and also supplied by external heat around surface walls of the 

container. Heat gain increases the rate of reaction and promotes external thermal runaway [2-

3]. Combustible mixtures undergoing exothermic reaction in the absence of heat loss will 

always attain the state of thermal explosion.  

      Instabilities in combustion front are due to temperature perturbation in a combustion 

chamber, these temperature perturbations lead to heat loss [1-11] in the form of radiation, 

convection, conduction and evaporation. Heat loss in practical situations is mainly due to 

radiation. Combustible mixture undergoing exothermic reaction in the presence of heat loss 

cannot attain the state of thermal explosion and combustion efficiency decreases [6] with 

increase in heat loss that results in soot formation [6,11]. 
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                           Combustion process of thermite mixture (2Cr2O3+3Zr+n*ZrO2, 

Cr2O3+2Al+n*Al2O3) [12] is affected with change in inert diluter and its percentage.  The 

behavior of these thermite mixtures is interesting from other mixtures in two ways. 1) The 

burn rate of thermite mixtures (2Cr2O3+3Zr+n*ZrO2, Cr2O3+2Al+n*Al2O3) are identical for 

identical burning temperatures even there is change of diluter (ZrO2, Al2O3). 2) The change 

of diluter for such mixtures only affects the combustion limit. Such a behavior of themite 

mixture is interesting to understand from an academic point of view. Detailed investigation 

for such reaction allows us to analyze the characteristic features of thermite mixture. 

Heterogeneous combustion models developed till today did not concentrate on such minute 

aspects; instead they have generalized the behavior of all thermite mixtures [13-15]. In 

addition, earlier literatures have not concentrated to account for heat loss parameter which is 

apparent during combustion process. Whereas experimental investigations [3-4, 7-11] are 

only limited for the calibration of the combustion parameters. [3] Reports the effect of 

change of distribution of point heat sources on burn rate without considering the heat loss of 

parameter of reaction cells. In real time situations, heat transfer affects internally the 

combustion performance, efficiency, and emissions. 

                 The heterogeneous combustion models [8, 13-15] developed until now have 

neglected the heat loss parameter. One dimensional heterogeneous combustion model 

described in chapter 2 explains the role of disorderness in internal microstructure of a 

combustible system by assuming there is no heat loss of a reaction cell. Combustion limit or 

flame extinction in actual combustible systems are the consequences of heat transfer, and 

this heat transfer may be in the form of loss or gain in the system. Present chapter describes 

the one dimensional discrete combustion model that accounts for randomness in internal 

microstructure with inclusion of heat loss in the system. Numerical experiments for different 

values of heat parameter are performed and results thus obtained are compared with the 

available experiments on combustion of thermite mixture performed by Dvoryankin.etal [12]. 

The model proposed in this chapter concentrates on the mixing, packing of actual thermite 

mixtures and their heat loss. The mixing and packing of heterogeneous mixtures is addressed 

by varying the internal microstructure of the system. Heat loss during combustion of 

heterogeneous mixture is addressed by the heat parameter.  

                 Heterogeneous combustion process is now simulated in present chapter by 

assigning discrete positions (similar to chapter 2) and heat loss to the reaction cells. The 

present chapter reports for behavior of wide ranges of disordered system with inclusion of 
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heat parameter on reaction front propagation and combustible limits. Detailed analysis for 

the effect of heat loss parameter on combustion process would facilitate the combustion 

designer with knowledge of combustible limits.    

4.2  Modeling 

4.2.1 System definition and assumptions 

One dimensional system, consisting chain of reaction cells (the point heat sources particles), 

distributed along an axis x in periodic and random manner, is considered here. In addition to 

above specification the heat parameter is adjusted for each reaction cell during reaction front 

propagation. The medium filling the space between the reaction cells is characterized by 

thermal conductivity k, density ρ, and heat capacity c. The cells are considered to be 

immobile and are characterized by an ignition temperature Tign and heat parameter (β). When 

the temperature of an unburnt cell reaches the value Tign, the ignition and instantaneous 

burning away of the cell occurs with the release of heat Qi . The present model is based on 

the existing theories of flame Propagation [13]. The problem is explained by equation 

( )

( , ( ( ))) (( ), ( ))*(( ) )in i i i i i

i t

T t x T T t t x x t t         

Tin is the initial temperature of the system; ti is the instant of ignition of the ith cell, located at 

(xi )  and ΔTi (t, (x)) is the temperature induced at the point x with β at time moment t by a 

single-point heat source, located at xi=0 and ignited at time moment ti=0. The summation in 

expression is over all sources i ignited up to time moment t. For a one-dimensional problem 

the governing equation for calculating temperature of particle with heat parameter can be 

obtained as  

 √   ∑
  

√       
   

        
 

                       
                              (1) 

Equation (1) is obtained by introducing non-dimensional parameters to the thermal 

conductivity equation (similar as shown in chapter 2). In practical situations [3-4, 7-12], heat 

transfer mechanism along with mixing and packing heterogeneous mixture become 

important during combustion process. The heat parameter β is introduced for each reaction 

cell to account for heat loss or heat gain in the system.    
  

  
 is the heat parameter 

associated with the reaction cell.  =0 corresponds to the system with neither heat loss nor 

heat gain and it is same as that of the system considered in chapter 2,   0 is considered as 

the system with heat gain generally this kind of combustion reactions are practical in case of 

explosions where as   0 represents the system with heat loss during combustion reactions 
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and are observed in combustion of thermite mixtures and solid propellants. Situations like 

larger surface [1] to heat source promote heat loss and retards ignition. In a macro scale 

combustor, heat loss during the flame propagation is much smaller than the heat produced 

by the combustion and the heat loss can be effectively ignored in the calculation of the 

combustion. In a micro scale combustor, the increased heat loss decreases the combustion 

efficiency and causes quenching when it becomes excessive. Reaction front propagates in 

radial direction while the dominant heat transfer is towards the top and bottom of 

combustor walls if the width of the combustor is very small. Heat loss becomes apparent 

with increasing characteristic time for conduction [3-4]. The present chapter reports for 

detailed numerical and theoretical analysis for combustion wave propagation with the 

influence of heat loss (β>0).  

              

 Consequently flame extinction [7-11] occurs if the heat loss from reaction front becomes 

excessive. Ignition is directly affected by heat loss, while extinction or combustion limit is 

affected by reduction in reaction rate [5]. The mean burn rate [13-16] of the system is 

computed as  

     
       

       
                                                        (2) 

Increase in rates of reaction (burn rate) promotes the external thermal runaway whereas 

increase in heat loss retards thermal runway and promote the combustion limit. The 

combustion dynamics depends on relative rates of above two processes. To account for 

conductive heat loss there must be existence of temperature gradient in a system (model). 

Flame extinction or combustion limit is achieved in model either by removing a certain 

amount of branching radicals or by removing certain amount of heat. Reducing branching 

radicals is achieved by introducing chemical inhabitants into reaction region. Reduction of 

certain amount of heat is achieved by reducing the reaction rate by blowing it with cold gas 

or decreasing the reactant concentration.  These effects in combustion dynamics are 

investigated by present one dimensional discrete model that accounts for internal 

microstructure and heat loss.  

4.2.2 Theoretical analysis of Periodic system 

 
 Consider briefly the characteristics of combustion of one-dimensional periodical systems 

with identical point heat sources; that is, in the system under consideration xk=kl0 and 



Chapter 4 

 

 

  
79 

 
  

Qk=Q0 for any k. The induction period (τi) here is introduced as a time interval between 

ignitions of two neighbor sources 

τi= ti -ti-1  

and then an instant burn rate of periodical system is ωi=1/τi. then Eq. (1) becomes 

 √   √ ∑
 

√ 
   ⌈ 

  

 
 

 

 
  ⌉ 

                                         (3) 

The theoretical dependence ω(ε) of non dimensional burn rate on non dimensional ignition 

temperature (Figure 4.1) is the solution to Eq. (3). Theoretical dependence Eq. (3) thus 

obtained is utilized for comparison with the numerical results calculated using eq.(1). Figure 

4.1 shows that the comparison plot between burning rate (ω) and ignition temperature (ε) for 

a periodic system for different values of heat loss. 

 

Figure 4.1 Plot between Non-dimensional Ignition temperature and Burn rate calculated using 
theoretical equation (3) for different values of β. The circles in the figure show the maximal value 
of ignition temperature that can be obtained using theoretical equation (3). 

 
As the heat loss value is increased the combustion limit or existence of ignition temperature 

decreases. However the burning rate remains same within the combustion limits at different 

values of heat loss. For values of β<10-8, it is observed that there exists two values of burn 

rates for a single ignition temperature. The lower curve in figure 4.1 shows that the non-

dimensional ignition temperature and burn rate are directly proportional to each other, this 

situation is not possible in actual situations. The lower curve obtained from eqn. (3) is 

because of increase in value of β. As the heat loss parameter increases, the combustion limit 
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decreases. For a given β, a system with ε >εcr steady state combustion is not possible. Hence 

the upper curve values of burn rate are considered as actual. 

        The presence of heat loss introduces a limit to survival of ignition temperature [17] 

even for a periodic system [7-11]. Heat loss in the system causes increase in thermal runaway 

thus retarding the ignition process. As heat loss increases the theoretical dependence Eq. (3) 

cannot have solutions at higher ignition temperatures. εcr  (theoretical) at a particular heat loss 

is obtained as maximal value of existing ignition temperature.  

 

4.3 Results   

4.3.1 Numerical Calculation of Burn rates of Periodic system 

The numerical dependence (ω(ε)) using eq.(1) can be explained by simulating the periodic 

system with concatenation of point heat sources characterized by heat parameter on one 

dimensional chain. Total point heat sources in the system were divided into two categories - 

1000 burnt and 2500 unburnt point heat sources. Initially all the first 1000 particles are 

considered to be ignited at τi =0. Two cases for distribution of heat parameter of reaction 

cells are considered one with identical heat loss and the other with random distribution of 

heat loss. Now the system is left to itself, and the simulation of propagation of reaction front 

in accordance to eq.(1) is performed at different values of heat loss. The method of 

distribution (identical or random) of heat loss values did not affect combustion performance. 

Hence in numerical experiments identical value of heat loss for all reaction cells are 

considered. The temperature of each unburnt cell is obtained by incrementing the time tk , 

and for predetermined ignition temperature the ignition time of the k
th

 particle is noted. The 

ignition time is calculated for all unburnt cells and the burn rate is now obtained by using 

eq.(2). The in house C code for numerical simulation of combustion process is compiled and 

validated for different values of Heat loss parameter (β). Figure 4.2 shows the comparison 

plot for burn rates of different values of β obtained using Eq.(1) and Eq.(3) which hints  C 

code is simulating combustion process with complete agreement to the theoretical Eq.(3). 
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Figure 4.2.Comparison Plot between burn rates (ω) for different values of β. Circles obtained by Eq. (1) 
and solid lines by Eq.(3).  

 

In spite of the fact that Eq. (3) (solid line in Figure 4.2) has theoretical solutions for all ε<1, a 

steady state combustion for a periodic system can exist only in the limited range of parameter 

ε which can be obtained by numerical calculation of Eq.(1). This can be explained by 

obtaining the numerical combustion limit of a system using eq.(1).  

 

4.3.2 Combustion limits  
 

This combustion limit [17-20] is defined as the condition when the heat release of the entire 

domain of particles is just sufficient to increase the bulk temperature of the mixture to the 

ignition temperature. During the numerical calculation of ignition times of reaction cells at 

higher ignition temperatures (or at higher values of heat loss) it is observed that the 

temperature of unburnt particle reaches maximum temperature and then starts decreasing as 

the time increases as shown in Figure 4.3. 

The combustion front doesn’t propagate for higher temperatures, this is termed as critical 

ignition temperature (εcr(numerical))of a periodic system.  At ε<εcr(numerical) a combustion mode is 

stable and the combustion process reaches a steady-state mode that proceeds until all heat 

sources are burnt. It can be observed from table 4.1 that the numerical combustible limit 

of a periodic system is less than the theoretical combustible limit for each value of heat 

loss parameter.  

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

Theoretical

Numerical (β=2) 

Numerical(β=0) 

ω
 

ε 



Chapter 4 

 

 

  
82 

 
  

 

 

 Figure 4.3 Plot between temperature of a unburnt particle and time calculated using numerical 
equation (1) for different values of β. Dots in figure represent the numerical combustion limit. 

 

 

 

 

 

 

 

 

 

Table 4.1.Theoretical and numerical combustible limits. 

 

 The propagation of combustion front is in stable mode for ε<εcr(numerical) at different values 

of heat loss parameter. The periodic arrangement of neighboring point heat sources is a 

fundamental property, this means that dynamic behavior of internal microstructure is 

unaffected by small perturbations at ε<εcr (numerical) . Hence it is of academic interest to 

analyze and justify the structural stability at higher ignition temperatures (> εcr (numerical)) with 

affect to change in initial parameters.       

               The numerical calculations performed till now in this chapter were constrained to a 

periodic system. The role of randomness in internal microstructure of an actual combustible 

system is well established in chapter 2. To investigate the dynamic characteristics of actual 

combustible system with effect of heat loss the change in internal microstructure is 

Heat loss (β) εcr(Theoretical) εcr(numerical)  

0.0001 0.85 0.47 

0.001 0.77 0.46 

0.01 0.64 0.4 

1 0.25 0.18 

2 0.15 0.13 
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introduced. Unburnt particles in disordered system are distributed utilizing the probability 

density function of gamma distribution for random system (similar to system described in 

chapter 2). The probability density function of gamma distribution with different values of 

shaping parameter (a=1, 5, 20) is shown in Figure 4.3 (chapter 2). Numerical simulation and 

computation of modeled system for different realizations of internal microstructure and heat 

loss parameter requires high computing speed. This can easily achieved by in house C code 

with provision of parallel execution. 

4.3.3 Disordered System 

Present section focuses on the numerical results obtained for disordered system and analyze 

the same in the view of actual systems. During numerical experiments two issues that arise 

generally for actual systems like mixing, packing and heat transfer mechnism of thermite 

mixtures are addressed by varying the internal microstructure and heat parameter. Analysis of 

extreme reaction conditions during combustion synthesis process requires new methods for 

controlling the microstructure of the system [21-24] and ambient heat loss. It is therefore 

important to perform numerical experiments and analyze the results obtained. Heat loss 

parameter (β) is employed for each reaction cell in a identical fashion. Hence the numerical 

results of a disordered system modeled with different internal microstructures and identical 

heat loss parameter are reported. Figure 4.4 and 4.5 displays ignition time profiles for 

different heat loss parameters (β=0.0001 and β=0.01) of different systems. The reaction 

front for an ordered (periodic) system (represented by (d)) shows linear relation between the 

non-dimensional ignition time and non-dimensional distance unlike the reaction front for 

disordered (gamma distribution) system. It is also observed that the reaction front propagates 

linearly for all systems at lower ignition temperatures (<0.10). As the ignition temperature 

increases the reaction front starts propagating with stops and this is similar to unstable 

combustion. Even in actual systems the steady combustion becomes unstable at higher 

ignition temperatures and is evident when observed with high speed micro video recording 

[22-23]. Earlier literatures [13-15] where the heat loss is neglected reports the critical 

combustion or unstable combustion (ε>0.42) is similar for all disordered systems. In actual 

systems this is not the case. During actual combustion process as the temperature increases 

due to chemical heat release, the rates of reaction and conductive heat loss increases. Because 

of heat loss there exist a minimum separation between reaction cells beyond which flame 

cannot propagate. Inherent heat loss mechanisms are associated with combustion front, such 

as diffusive heat transfer and radicals transfer in presence of steep temperature and 
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concentrations gradients at the reaction front. Heat loss is also associated with radiation 

either from high temperature front or formation of soot particles. 

 

 

Figure 4.4. Ignition time profiles for β=0.0001 of a different systems. (a) a=1; (b) a=10; (c) a=20; (d) is 
periodic. 

Numerical results from developed model show that the heat loss in conjunction to internal 

microstructure plays a crucial role in combustion limit. The critical combustion or non-linear 

propagation of thermal wave begins at different ignition temperatures for different systems 

as shown in figure 4.4 and 4.5. Combustion wave propagation is clearly observed to be 

shifting from stable to unstable for gamma distributed system with shaping parameter (a)=1 

as ignition temperature increases. Instabilities in combustion front are due to temperature 

perturbation in a combustible system. Instability in combustion wave propagation or reaction 

front stops is more pronounced for the cases of high ignition temperature with randomness 

in the system. The available heat energy in system has to compensate the heat loss of 

reaction cells and disordered microstructure of system characterized by different probabilities 

of inter particle spacing of point heat source particles in system. 
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Figure 4.5. Ignition time profiles for β=0.01 of a systems described by different positioning of reaction 
cells. (a) a=1; (b) a=10; (c) a=20; (d) is periodic. 

As the disorderness (for a=1) and heat loss (β=0.01) increases in the system the critical 

combustion begins even at lower ignition temperatures (ε=0.12). This can be clearly inferred 

from figure 4.5. The commencement of critical combustion is due to thermal runaway of 

reaction cells that retards ignition process. Systems with higher heat loss (β=0.01) and 

disordered microstructure have higher thermal runaways because of temperature 

perturbations. Temperature perturbations retard the ignition process in the form of 

conduction and radiation process. The temperature perturbations are direct consequences of 

uncertainity in ignition delay times. Figure 4.6 represents the distribution of ignition delay 

times for reaction cells arranged by gamma distribution (a=1and 20) and cells are 

characterized by different heat loss values.  

It is clearly observed that the distribution of ignition delay times of reaction cells are more 

clustered for value of β=0.01. Ignition delay times are more uncertain for higher heat loss 

values. These characteristics results in more instabilities. The instabilities in reaction front 

propagation are associated with increased ignition delay times which are directly proportional 

to the induction periods and ignition temperature of a system. Uncertainty in ignition delay 
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times of a reaction cells increases with increase in ignition temperature and disordered 

microstructure of system. These uncertainties in ignition delay times in the system causes for 

slow self heating. The effect of ignition delay times and temperature gradients plays the 

crucial role in deciding the stability of reaction front, combustible limits. 

 

 

Figure 4.6 Distribution of delay in ignition times for different systems. (a) a=1 & β=0.0001; (b) a=20 & 

β=0.0001; (c) a=1 & β=0.01 and (d) a=20 & β=0.01. 

4.3.4 Combustible limits of Disordered system 

 Here the combustible limits of disordered system with respect to different heat loss are 

determined. Combustion limits refer to range of compositions of mixtures, for fixed burning 

temperature, with in which a chemical reaction is possible when an external ignition source is 

introduced. Combustion limits are not absolute, but depend on percentage of diluters and 

strength of ignition source. Experimental studies have shown that the stronger the source of 

ignition stimulus, the leaner the mixture that can be ignited. Combustion limits for thermite 

mixture (2Cr2O3+3Zr+n*ZrO2, Cr2O3+2Al+n*Al2O3) [9] varies with change in percentage 

of diluter (ZrO2, Al2O3). It is established that the propagation of reaction front under actual 

conditions is always accompanied by heat losses, which can result in combustion break off. 



Chapter 4 

 

 

  
87 

 
  

The existence of an ignition temperature for heterogeneous systems of particles in 

suspension introduces a limit to reaction front propagation [23-24]. This combustion limit is 

defined as the condition when the heat release of the entire domain of particles is just 

sufficient to increase the bulk temperature of the mixture to the particle ignition temperature. 

This condition is equivalent to stating that the adiabatic temperature is equal to the ignition 

temperature. In actual conditions the heat loss is introduced either by changing the 

percentage of diluter or by blowing cold nitrogen air over the reacting sample against the 

reaction front. Numerical combustion limit for one dimensional disordered system is 

evaluated as point of ignition temperature above which the reaction front doesn’t propagate 

through the system. Numerical combustible limit is obtained using Eq. (1). Figure 4.7 show 

the temperature profile of a burning particle at different critical ignition temperatures for 

β=0.0001 and β=0.01.  

 

Figure 4.7 Temperature profile for unburnt particle of a disordered system. (a) ε=0.37 for 1183 particle 
(b) ε=0.14) for 1184 particle (c) ε=0.47 for  3101 particle (d) ε=0.36 for 1304 particle. 

Note here system whose reaction cells are arranged by gamma distribution with shaping 

parameter a=1 (figure 4.7(a) and (b)) and shaping parameter a=20 (figure 4.7(c) and (d)) are 

considered. The same is repeated for other disordered systems at other values of heat loss 
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(β=0.1, 1, 2..). It is observed that as time increases the temperature of unburnt particle 

reaches maximum temperature and then after decreases with increase in ignition time. Thus 

the numerical combustion limit is obtained numerically and this analysis would provide 

combustion engineer with information regarding the possible combustion limits. The 

numerical combustible limit for disordered (gamma distribution) system decreases when 

compared to periodic combustible limit because of increase in uncertainty in inter particle 

spacing and heat loss (β). 

Table 4.2 illustrates the numerical combustible limits of disordered system with different 

values of heat loss parameters. It is observed that the combustible limits decreases with 

increase in randomness of the system structure.  

 

 

 

 

 

 

 

Table 4.2. Numerical combustible limits of disordered system. 

Combustible system with absence of heat loss (β=0) the burning temperature is just the 

adiabatic temperature and the flammability limit for such systems is observed for quite high 

ignition temperature. 

 

4. 3.5 Burn rate 

Burn rate for the developed modelled are calculated numerically using Eq. (1) and Eq. (2). 

Figure 4.8 shows the burn rates calculated for different gamma distribution (a=1, 2, 5, 10, 15, 

20) systems and periodic system. It is observed that the burn rate decreases with increase in 

randomness of the system. Gamma distribution system with a=1 is mostly randomized when 

compared to the gamma distribution system with a=20. It is interesting to observe from the 

numerical results that the burn rates are not affected by the heat loss parameter for a 

particular system.  

The modelled system or heterogeneous mixture with different heat loss or diluter does not 

affect burn rate at same ignition temperature. This type of combustion can be observed in 

Heat 
loss(β) 

εcr(numerical)  (a=1) εcr(numerical)  
(a=10) 

εcr(numerical)  
(a=20) 

0.0001 0.36 0.44 0.45 

0.001 0.255 0.39 0.4 

0.01 0.12 0.3 0.34 

1 0.000091 0.03 0.07 

2 0.0000026 0.013 0.03 
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burning of thermite mixtures (2Cr2O3+3Zr+n*ZrO2, Cr2O3+2Al+n*Al2O3). Burn rates of a 

random system are essentially less than the burn rate of a periodic system. 

 

Figure 4.8. Plot for comparison of Burn rates of different systems calculated using Eq.(1) and Eq. (2). 

       The comparison of experimental data for combustion of thermite systems with 

theoretical model developed in earlier section. The work of authors [12] investigate that the 

burning rate changes with burning temperature for a broad range by altering the inert diluter 

and percentage of inert diluter. Figure 4.9 comprise the data of work [12] 

(2Cr2O3+3Zr+n*ZrO2, Cr2O3+2Al+n*Al2O3), processed in co-ordinates of burn rate and 

burning temperature. The above mentioned thermite mixtures has different behavior from 

the other mixtures [12]. It is very interesting to observe that the burn rates for thermite 

mixture don’t vary with change in diluter for particular burning temperature. However the 

burn rates and inflammability limits changes with change in percentage of diluter. Hence it is 

of academic interest to find out accurate model parametrs and establish the developed model 

by comparing with available experimental data. The numerical results obtained from model 

developed in earlier sections are compared with experimental data [12]. The arrows in Figure 

4.9 correspond to commencement of oscillating mode for combustion process of different 

thermite mixtures.  
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Figure 4.9 Plot for comparison of Burning rates and burning temperature for thermite mixture[12].   

 

Treatment of experimental data [12] have been performed in non dimensional co-ordinates

  .Theoretical values of the critical parameters such as cr  and cr  are assumed as 

commencement of oscillating modes of combustion, practical in experiments. The 

percentage and change of inert diluter is correlated with heat loss parameter. Assuming the 

critical values of rate of burning ( crr ) and burning temperature (
cradT ), measured in 

experiments, correspond to commencement of oscillating modes of combustion process for 

an actual system. Then eqn. (27), from [15], in accordance with Figure 4.9, critical non-

dimensional burning rate )( crcr    depends on the shaping parameter of neighboring 

reaction cells and inflammability limit depends on heat loss parameter (β); this implies that 

cr  depends on the system microstructure and heat loss parameter (β).  

          Experimental data [12] (represented by symbols) are treated using expressions (27)-

(29) from [15], similar to method shown in [15] and chapter 2, are shown in Figure 4.10. 

Treated experimental results are now compared with numerical results obtained from 

developed model in figure 4.10. It is numerically obtained from developed model that a 

system with β>(10^-8) has no effect on combustion limit and is similar to system with β=0 

(neither heat loss nor heat gain). β<(10^-8) is considered as critical heat loss parameter. The 
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commencement of unstable combustion begins at different ignition temperatures for 

different values of shaping parameter and heat loss (β). 

 

Figure 4.10. Comparison plot between experimental and develop model results for burn rates and 

combustible limits. Solid lines are obtained from develop model and symbols are representation of 

experimental [9] . 

 

This is mainly due to the temperature disturbances associated within the system due to heat 

loss and internal microstructure. As heat loss increases the heat energy released from 

combustion of particle is lost to surroundings and combustion of succeeding particle. This 

other way resembles to external cooling of the mixture. The more the heat loss the less is the 

critical flammability limit and inflammability limit. Suitable heat loss parameter is obtained 

for agreement of experimental inflammability limit of mixture. These values are found to be 

β= 68*10-6   with a=1 for mixture Cr2O3+2Al+n*Al2O3 and β= 78*10-8 with a=1 for mixture 

2Cr2O3+3Zr+n*ZrO2. Experimental burn rates for ignition temperatures above 0.35 are in 

close agreement with the burn rates calculated by developed model. The inflammability limits 

for thermite mixtures using diluters ZrO2 and Al2O3 is at temperature 1530K and 1820k 

respectively and is in close agreement with the limits ε=0.478 and ε=0.433 obtained by 

developed model. Thus the developed model (that includes variation in microstructure and 

heat loss parameters) allowed prediction of the burn rates and inflammability limits of Cr2O3 

with different diluters. This type of study can now be even extended to analyze the behavior 

of other thermite mixtures by suitably varying the parameters. 
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4.4. Conclusion 

Modeling of heterogeneous combustion process with inclusion of heat parameter (β) is 

performed on a one dimensional chain of reaction cells arranged either in ordered or 

disordered manner. Unstable modes of combustion in periodic system have been 

investigated for different values of heat loss. Wide ranges of disordered systems are obtained 

by changing the shaping parameter (a) of gamma distribution. Heat loss parameter (β>0) is 

identical for all cells. Propagation of combustion front and its limits have been investigated 

numerically. Heat loss (β) is crucial parameter that effects on the combustible limits.  As heat 

loss increases the combustible limit decreases. Burn rates of the system are calculated for 

different values of β and are affected by the change in microstructure of the system and 

remain unaffected by the heat loss parameter (β). Results of developed model are compared 

with experimental result on combustion of thermite mixtures (2Cr2O3+3Zr+n*ZrO2, 

Cr2O3+2Al+n*Al2O3) in the view of burn rates and inflammability limits. Numerical results 

from developed model completely agrees with experimental results at higher values of 

ignition temperature (ε>0.3).  
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CHAPTER 5 

Two Dimensional Modeling of Heterogeneous 

Combustion Process by Slice Reconfiguration Scheme 

 Present chapter explains the indigenous mathematical modeling and numerical simulation of a sheet 

combustion using the diffusion equation. Combustion of such heterogeneous system is modeled by concatenation 

of discrete reaction cells in ordered, random distributions on a two dimensional plane. Modeled system is 

classified into isotropic and anisotropic depending on parameter (θ) along perpenicular direction. θ is related to 

the amount of voids (oxidizer) between the cells. θ=1corresponds to the isotropic system and θ>1 represents 

anisotropic system. Numerical simulation of such a combustible sheet requires high performance computing 

machine. Progress in high performance computing has allowed fast simulation and diagnosis of heterogeneous 

combustion sheet. Utilizing the parallel programming from MPI standards in house C code has been built.  

MPI programming task parallelizes the loop iterations according to number of nodes available in high 

performance machine (HPC1). HPC1 has 128 nodes with 8 cores each. The programming is designed to 

provide access to nodes and heterogeneous cores by the mode of Single Program shared Data. Slice 

reconfiguration scheme is proposed for simulation that instead considers only hot reaction cells. The main idea 

is to locally reconfigure the reaction cells based on their temperature profile. This method achieves a multi fold 

improvement in computation time instead of considering total reaction cells, without loss of any accuracy. As θ 

increases the numerical results show that the ignition time of reaction cells decreases and reaction rate of the 

combustible system increases. Burn rate sensitively depends on internal microstructure of the system. Various 

fingering like patterns and splits in fingers that are encountered during actual experiments are reproduced with 

the developed model.  

 

5.1 Introduction 

 Chapter 2 discussed about the importance of disordered internal microstructure by one 

dimensional modeling of heterogeneous combustion [1-13]. However the one dimensional 

modeling [10-13] of combustion process cannot explain the dynamic issues such as 

combustion front and fingering instabilities that are apparent during actual situations. These 

dynamic parameters can be understood by modeling the sheet combustion [14-24]. Present 

chapter studies two dimensional modeling of heterogeneous combustion by considering the 

ordered and disordered distribution of point heat sources. In the burning of actual 

heterogeneous combustible sheet, a propagation of thermal front is complicated by the 
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internal microstructure, amount of oxidizer and heterogeneity of the mixture [21-24]. 

Fingering instability patterns shown in the work [25-31] are detected during experiments with 

help of high speed video recorder. Fingering instabilities are similar to thermal diffusion 

instability [25-26, 31-30]. Thermal diffusion instability was first reported on Bunsen burner 

and has been extensively studied ever since. Fingering like patterns, detected in experiments 

[25-26, 31-30], occur when a solid fuel is forced to burn against the oxidizing wind. As a 

consequence, the thermal front in the reaction region starts propagating slowly with emission 

of products. These products do not glow in visible light. These observations suggest that the 

dynamics of thermal wave are localized to the region of interaction of thermal wave and 

oxidizer. Such realization of thermal wave leads us to the study of reaction front and to limit 

thermal wave to a slow burning regime. Analysis of fingering patterns and instabilities are 

limited to experimental investigations [25-31] till now, however the mathematical modeling 

[14-24] and dynamical behavior of such fingering patterns are not explored. Mathematical 

modeling and numerical simulation of such fingering instabilities is of fundamental 

importance and study in these directions can provide solution to computational aspects of 

thermal diffusion instabilities.  The diagnosis of rate of reaction front (rate of thermal 

fluctuations) enhances the fundamentals of thermal kinetics and aids in improving the 

performance of those engineering devices that utilizes it. The flame stability [21-25] is the 

most important controlling factor in design of combustion chamber. Investigations of stable 

and unstable flames for different combustion regimes are crucial and they are completely 

ignored. There were only a few attempts in the earlier literature [14-24] to take into account 

of the randomness of system. Variation of perpendicular parameter of the system and its 

effect on the combustion of heterogeneous systems is completely ignored. The systematic 

study for the effects of variation of perpendicular parameter and change in internal 

microstructure on reaction rate, flame structure and fingering patterns are being simulated 

and analyzed on a two dimensional plane in present chapter. The model of discrete 

combustion waves [1-6,10-13], which has very interesting behavior, similar to the behavior of 

the combustion of actual heterogeneous systems have been considered here. 

              Difficulties and uncertainties often associated with experimental determination of 

flame dynamics [25-27] are overcome by mathematical modeling and numerical simulation. 

In addition to that, the experimental research is too expensive for observing the factors and 

conditions affecting the flame propagation. Hence the computer based modeling techniques 

are considered as an alternative method of estimating burn rates and flame structure over 

wide ranges of operating conditions. The mathematical models of combustion process that 
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incorporate detailed reaction kinetics can predict burn rates (reaction rates). Nevertheless the 

fast and correct prediction of these parameters is a demanding test of the accuracy and 

completeness of kinetic reaction mechanism. 

             Arrangement of burnt and unburnt cells on a two dimensional plane is done in 

periodic and disordered manner in present chapter. Unburnt cells are ignited at different 

ignition temperatures based on the governing equation obtained using two dimensional 

diffusion equation. It is difficult and time consuming to track the temperature profile of 

unburnt cells in a disordered system. Consequently the temperatures of all unburnt cells with 

effect to burnt cells for different periodic boundary conditions are calculated for each time 

step. And these unburnt cells are ignited spontaneously at different pre-determined ignition 

temperatures. This step is repeated until the optimized value of dimensions along axis and 

periodic boundary conditions for different y parameter are obtained. This method requires 

dedicated huge computing source for couple of months. In addition, the Computation load 

increases with increase in size of microstructure, randomness and periodic boundaries of 

system for present two dimensional model. Consequently simulation of a combustion sheet 

by two dimensional plane requires high performance parallel computing [32-33]. Desktop 

systems with single processor takes nearly 1-2 months for numerous loop iterations, the 

advancements in high performance parallel computing with MPI programming paved a path 

to access the nodes simultaneously. MPI is abbreviated as message passing interface where 

the multiple data is shared between the address spaces of all cores through cooperative 

operations on each cores. MPI provides widely used standards for writing message passing 

programs. The interface attempts to be practical, portable, efficient and flexible. Interface 

specifications have been defined for C. The ability to utilize MPI programming to achieve 

fast and accurate computation of combustion process, allows for efficient and reliable 

analysis on calculated data. MPI programming is apt for numerical simulations since it 

provides task parallelism along with data broadcasting and data gathering in synchronization.  

                The present chapter investigates dynamical behavior of sheet combustion with 

indigenous mathematical modeling and numerical simulation of combustion process. In this 

chapter, the affects of dynamical, structural, statistical and linear thermal properties on the 

combustion of a two-dimensional ordered and random (disordered) heterogeneous system 

are reported. Implementation of modeling and numerical simulation of combustion process 

is discussed in the context of optimized computing time, ignition time profile, reaction rates 

and flame structure. 
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5.2 Modeling 

 In the present chapter the combustor chamber is modeled by two dimensional plane. 

The model is based on the existing theories of flame propagation that assumes the width of 

the heating and reaction zones are much greater than the size of individual powder particles 

[1-8, 10-13]. Propagation of combustion front is modeled by distributing combustible point 

particles (cells) in ordered, random methods. The spontaneous ignition and burning away 

occurs as soon as the temperature of the unburnt particle reaches a pre-determined ignition 

temperature (Tign).  Experimental data [6, 10-13, 25] show that the chemical reaction between 

the reactants starts practically immediately after the appearance of the liquid phase in the 

system and the burn-out time for the active particles is always essentially less (at least order) 

than the characteristic time of the heating of the particles from the initial temperature up to 

ignition temperature. This allows us to consider the process of the burn-out of the reaction 

cells of the system as instantaneous and the instant of reaching of some threshold 

temperature Tign, at which a liquid phase (e.g., molten materials or eutectic) appears in the 

system, can be considered as an instant of the ignition of the cells.    A two dimensional 

system, consisting of reaction cells (particles) – the point heat sources (reaction cells), 

distributed along an axis (x, y), with ordered and uniform random distribution have been 

considered here. Combustion of actual heterogeneous mixture is a exothermic reaction 

between fuel and oxidizer. Experimental studies have shown that the ignition time decreases 

with increase in amount of oxidizer [25-28,31].  Burning of engineered mixtures does not 

vary significantly over the range of temperatures where they are designed to be used. 

Engineered heterogeneous mixtures are practically impossible to prepare.  In actual 

situations, the burning of reacting mixture apparently varies with change in oxidizers, diluters 

and its percentage [10]. The amount of oxidizer or thermal capacity between reaction cells in 

actual system is now related to the expansion of y parameter (θ) in the present model. Hence 

the variation of the temperature field or expansion coefficient along the transversal(y) 

direction is considered as θ.   Variation of parameter θ is the tendency of matter to change in 

area in response to change in temperature through heat transfer. Coefficient of expansion 

describes how fast the amount of heat transfer changes with a change in temperature. The 

practical calculations‟ can be based on average or constant value of expansion parameter 

along y axis. Parameter θ of a mixture is uniform in all directions for an isotropic system, and 

non uniform along y-direction for an anisotropic system. Consequently it is considered as 
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isotropic system for θ=1 and anisotropic system with θ>1. The problem is explained by two 

dimensional equation with delta sources given by  

 

( )

( , ( , )) ( , (( ), (( )))in i i i i

i t

T t x y T T t t x x y y                                (1) 

Tin is the initial temperature of the system; ti is the instant of ignition of the ith cell, located at 

(xi yi)  and ΔTi (t, (x, y)) is the temperature induced at the point (x, y) at time moment t by a 

single-point heat source, located at (x, y)=0 and ignited at time moment t=0. 

                           The two-dimensional macroscopic equation with expansion parameter can 

be used for description of the evolution of the temperature of actual combustible system. 

For a two-dimensional problem the function ΔTi (t, (x, y)) with boundary conditions is 

obtained as 
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The, temperature of heat source (xk ,yk ) at time t is given as 
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Here ( )i m t    is referred to as the arrangement of burnt and unburnt cells. Where m(t) in 

eq.(3) is the number of a last source ignited by time t. And j      is referred to as the 

periodic boundary condition as along y-axis. Periodic boundary condition is introduced, so as 

to exclude the influence of inflammation of the system on the process under consideration. 

The ignition temperature Tign and specific heat cρ is considered as identical for all heat 

sources. In this case particularly laminar flame, the reaction propagates consecutively from 

source to source, and a source (i,j) can be ignited only after ignition of the source (i-1,j-1). At 

time tk of ignition of heat source (xk,yk) is defined by solution of the algebraic equation 
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Introducing dimensionless parameters (similar to chapter 2), Eq. (4) is the following:       
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  for given si (i<k). Equation (5) is utilized for the numerical calculation of ignition times of 

heat sources. All solutions depend on single parameter (ε) . 

                     Non dimensional burn rate (reaction rate) of the two dimensional system is 

introduced. Calculation of burn rates is crucial for the quantification of combustion front. 

The combustion of such developed system occurs non uniformly in a pulsating mode 

(shown in results section), and because of this a mean burn rate is considered. Mean burn 

rate of combustible system is given by  

( )

( )
k i

k i

y

N N

t t

l




                                                        (6) 

Where N is number of burnt particles and s is ignition time. Note suffix k and i refer to later 

and former layer of reaction cells in case of an ordered system. Numerical simulation of 

combustion sheet is performed by governing equations (5) and (6) in results section. 

5.2.1 Theoretical analysis of Periodic system 

Considering briefly the characteristics of combustion of two-dimensional periodic (ordered) 

systems with identical point heat sources; that is, in the system under consideration 

( , ) ( , );k o x k o yx kl y kl  and ( , )k x yQ Q for any k. The ignition delay time (Δt) is ignition time 

interval between two neighboring reaction cells in case of random distributed system and 

time interval between two neighboring layers for ordered system. 

 

( )k it t t    

The quantity reciprocal to the dimensionless induction period can be considered as a 

dimensionless “reaction-propagation velocity” over the length between the sources (i – 1) 

and i. In the steady mode of reaction propagation over a two-dimensional system of point 

reaction cells, the induction period and, hence, the mean reaction velocities are identical for 

all layers, 

 

1

t



 

for all i. In this case, with *ks t K   then Eq. (5) becomes  
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θ is isotropic parameter along y direction ω is burn rate (i,j) represents position of front and ε 

is the ignition temperature. Figure 5.1 shows the comparison plot for theoretical dependence 

ω(ε) for different values of θ using eq. (7). The burn rates increases with increase in 

parameter (θ). It is observed that the theoretical solution for dependence ω(ε) exists for all 

values of 0<ε~1.2. These theoretical observations can only be explained and justified by 

performing the numerical simulation of combustion sheet (periodic) using eq.(5). The 

mathematical models with periodic internal micro structure (periodic system) are used very 

often for numerical simulation of the combustion sheet, in doing so the numerical results of 

combustion sheet thus obtained can be validated with solutions of theoretical equation (7). 

 

 
Figure 5.1. Comparison plot for burn rates of an ordered system obtained theoretically using eq.(7) for 
different values of θ. 

In addition this exercise provides the information for optimized dimensions and conditions 

of a combustion sheet for different values of θ.  

 

5.2.2 Realization of Periodic (Ordered) system 

The periodic system concentrates on the parameters such as internal microstructure and 

parameter θ. Two dimensional periodic system consists of point heat sources distributed 

orderly along an axis x and y. lx,ly  are the dimensions along x and y directions. Total point 
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heat sources in the system are divided into two categories those are (ly*burnt) burnt and (lx*ly) 

unburnt point heat sources. The internal microstructure of the powdered mixture is achieved 

by concatenation of the burnt and unburnt point heat sources. Heat transfer between point 

source particles is carried through the thermal bridge and it is assumed that there are no heat 

loss i.e., total heat energy released by combustion of preceding particle is utilized for 

combustion of succeeding unburnt particles.   

 

Figure 5.2. Plot for microstructure of the ordered system modeled on a two dimensional plane.’*’ 
represents the burnt particles and ‘o’ is for unburnt particles. Left  represents for θ=1  right θ=5. 

 

A sufficient amount of thermal energy required for propagation of combustion front, is 

achieved by considering initial combusted (burnt) particles. The ordered microstructure of 

the two dimensional system with 4*30 burnt and 15*30 unburnt particles is shown in Figure 

5.2. Two dimensional system is broadly classified as isotropic 5.2(a) and anisotropic 5.2(b) 

depending upon the parameter θ along y-axis. The point particles (cells) are considered to be 

immobile and are characterized by an ignition temperature Tign. When the temperature of an 

unburnt cell reaches the value Tign, the ignition and instantaneous burning away of the cell 

occurs with the release of heat Qi .Tin is an initial temperature of the system, ti is a time 

moment of ignition, which has a coordinate (xi,yi) and ΔTi(t, (xi, yi)) is the temperature 

induced at the point (xi,yi) at time moment t by a single-point heat source, located at (xi,yi) 

and ignited at time moment t=0.  The simulation of combustion process involves burning 

away of all the unburnt cells.  
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5.2.3 Periodic Boundary condition 

In the simulations of combustion sheet the temperature changes arising due to 

inhomogeneity of the system affect the combustion process. Ignoring these temperature 

changes can cause unphysical dynamics while performing numerical simulation [14-24]. 

Therefore the size of system must be large enough to prevent unphysical topology. 

Incorporating periodic boundary can prevent inhomogeneties and account for accurate 

physical dynamics [18-23]. Figure 5.3 shows the schematic diagram for the periodic system 

(shown in figure 5.2) incorporating the periodic boundary. The ∞ for the summation of j 

series in equation (5) indicates the parameter of periodic boundary along y-direction. The 

fluctuations in temperature gradients increase with increase in parameter θ and ignition 

temperature of the system. This means for each θ and ε the periodic boundary (j) varies. 

Consequently a repetitive numerical simulation for system with lx*ly dimensions have to be 

performed using eq.(5). 

 

 

 Figure 5.3.  Schematic plot for the system incorporating periodic boundary. 1 Periodic boundary 
(Ny)=0; 2 Periodic boundary (Ny)=1. 
 

This method is executed to obtain the optimized periodic boundary condition (j) for 

different values of θ.  During the numerical simulation of periodic system the value of critical 

(optimized) periodic boundary is considered as a point from where the system‟s performance 

does not show significant affect even with further increase in parameter of periodic 

boundary (j). Note if the periodic boundary is less than the optimized (critical) periodic 

boundary than the results obtained are inaccurate. The (Algorithm) steps involved in the 

numerical simulation of combustion sheet for a single ignition temperature are 
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5.2.4 Algorithm 

1) Given pre-determined ignition temperature (ε) discretize the two dimensional combustible      

plane with sufficient burnt cells (ly*(burnt-1)) and unburnt cells (lx*ly).  Note intial periodic 

boundary (Ny) is 0.  

2) At time t=0 all the burnt cells are ignited. 

3) Time is incremented by dt and the temperature of the all unburnt cells is calculated using 

equation (5). 

4) The temperatures of all unburnt cells are compared with the pre determined ignition 

temperature.  

5) If the temperature of unburnt cell is >= ε, then it is transferred to burnt cells, else time is 

again incremented and steps 3-5 are repeated. 

6) Steps 3-5 are repeated until all the unburnt cells are transferred to burnt cells. 

7) Using the times of ignition and Eq. (6), the burnt rate is calculated. 

8) Repeat steps 1-8 for each incremented value of periodic boundary condition until the 

critical periodic boundary is reached. Critical periodic boundary is referred to as the value of 

a parameter beyond which it does not affect the burn rate.  

The above steps 1-8 are repeated for each value of pre determined ignition temperature. The 

Algorithm is programmed by C language and the simulated results (represented by symbol 

„Δ‟ in figure 5.5) for the ordered combustible system completely agree with established 

theories and theoretical dependence eq.(7) (represented by solid line in figure 5.5). The 

numerical results are validated and the C code is referred as standard. Since the execution 

time using C code by desktop computer is of the order of multiple months for a single 

ignition temperature (ε), this hurdle is overcome by utilizing MPI programming.  

 

5.2.5 Faster Computation by Using MPI 

The MPI programming is utilized by distributing the work to different cores and collecting 

the data in synchronization. Flow chart for the MPI execution of algorithm is shown below. 

The computation load on each core increases with increase in burnt and unburnt cells and 

parameter of periodic boundary along y-axis for each ignition time. Since the effect of burnt 

cells on unburnt cells cannot be ignored, the burnt cells cannot be shared or parallelized 

among cores. Hence the unburnt cells are task parallelized.  The steps involved in MPI 

programming for simulation of combustion process are same as that of earlier algorithm 

except for the step 3. Here the total unburnt cells that undergo numerous loop iterations are 
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distributed (Step (R) in Flowchart) among the slave cores by master core. Slave cores are 

assigned with the computation of temperature of shared unburnt cells in synchronization. 

Master core gathers the temperature value of unburnt cells calculated by slave cores and 

compares the same with pre-determined ignition temperature. Simulation of combustion 

process using MPI programming cut downs the computation time to a great extent when 

compared to the computation time of C program. 

Note for each nested iteration of periodic boundary (Ny or j), time increment and burnt cells 

the size of total unburnt reaction cells is of computational concern, hence it is of interest to 

further reduce the computational time. 
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5.2.6 Slice reconfiguration scheme 

 Hence a Slice reconfiguration scheme is proposed based on the monitoring of temperature 

profiles of unburnt. The vicinity of reaction front distinguishes total unburnt cells in to two 

regions of reaction zone (Hot cells) and cool cells as shown in Figure 5.4. Hot cells (reaction 

zone) are highly sensible to ignite and release heat instantly even for little increase in heat 
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energy. The percentage of hot cells with effect to burnt cells is around 20-25% of the total 

unburnt cells. The cool cells comprise of unburnt cells with low temperature and can be 

ignored until single hot cell is burnt. Consequently the total unburnt region is now reduced 

to hot cells (slice) at each nested iterations for j and ignition time. 

 

Figure 5.4 Temperature profile for unburnt cells. 

The slice is reconfigured time and again only after the temperature of cell has attained the 

pre-determined ignition temperature. The above step is repeated until all unburnt cells are 

burnt.  Considering the hot cells, the computation load on each core is reduced as the sizes 

of unburnt cells are reduced to hot cells. The results for different methods of simulation of 

combustion sheet are shown in results section. 

5.3 Results 

5.3.1 Periodic system 
 

The mathematical modeling and indigenous numerical simulation of combustion sheet has 

allowed devising the predictive method for obtaining ignition time profiles, flame structure 

(can‟t be obtained using one dimensional modeling), reaction rates and combustion limit at 

different ignition temperatures. The comparison for the burn rates of periodic combustion 

sheet computed by MPI program and slice reconfiguration schemes using eqn.(5) are 

illustrated in this section. The MPI programming for numerical simulation of periodic system 

is utilized to perform parallel operation of nodes present in HPC1 machine. HPC1 has 128 

nodes and each node has 8 cores. In the view of slice reconfiguration scheme the 
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computational time is improved to multi fold (<15 times). Considering the temperature 

profile of unburnt cells as shown in figure 5.4, the total number of unburnt cells is now 

reduced to hot cells (around 20% of total unburnt cells) for the calculation of temperature at 

each time. This step is performed until all the unburnt cells are burnt. The burn rates 

calculated from theoretical eqn.(7) for an ordered system shown in figure 5.5 (represented by 

solid line) is taken as reference for validation of numerical burn rates (calculated by eqn.(5) 

and eqn.(6)) obtained by considering total (MPI program) combustible system and proposed 

method(slice reconfiguration). Figure 5.5 shows that the numerical burn rates of an ordered 

combustible system calculated using MPI program and slice reconfiguration scheme. 

Numerical burn rates of an optimized combustion sheet calculated using eqn.(5) and (6) 

completely agrees with the theoretical burn rates. From figure 5.5 it is observed that the burn 

rates of the periodic system increases with increase in parameter (θ) at particular ignition 

temperature. Isotropic system with parameter (θ=1) in all directions have lower burn rates 

when compared to that of the burn rates of anisotropic (θ>1) systems. θ is the extensive 

property of the combustible system and is related to thermal capacity of the system 

 
Figure 5.5. Comparison plot for burn rates of an ordered system obtained theoretically and numerically 
for different values of θ. Solid lines are theoretical burn rates and symbols represent numerical burn 
rates Δ-MPI and X- MPI and slice reconfiguration scheme. 
 

. As θ increases the thermal capacity of the system increases thus the ignition time decreases. 

This observation is similar to that of experimental results reported for the role of amount of 

oxidizer on burning time [25-28]. It is also observed from figure 5.5 that the numerical 

solution of burn rates using eqn. (5) and (6) exists only in the limited range of ignition 
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temperature (εcr(numerical)).The combustion front does not propagate above εcr(numerical) for a 

periodic system. The value of εcr(numerical) increases with increase in parameter (θ). The values of 

εcr(numerical) for different values of θ are as follows: εcr(numerical) = 0.49 for θ=1, εcr(numerical) = 0.51 

for θ=2, εcr(numerical) = 0.62 for θ=5 and εcr(numerical) = 0.87 for θ=7. Ignition time profiles of a 

periodic systems (θ=1 and θ=7) are shown in figure 5.6. The step by step fashions suggest 

that the particles in a periodic system burn layer by layer.  

 

Figure 5.6 Ignition time profiles of a periodic system.(a) θ=1 (isotropic), (b) θ=7 (anisotropic). 
 

The role of randomness in internal microstructure of an actual system is well established 

form chapter 2 and 4. Numerical experiments for ordered systems performed till now are 

essential to obtain the optimized dimensions for disordered system and for analyzing the role 

of disorderness in internal microstructure of actual combustion sheet. The optimized 

dimension values of combustion sheet obtained from numerical experiments performed for 

periodic system is taken as operating conditions for disordered system. The optimized 

dimensions of combustion sheet for different parameters of θ are shown in table 5.1. 

θ (Y 

parameter) 

lx*ly 

(Unburnt 

particles) 

Burnt layers(Lb) Optimized 

Periodic 

Boundary(j) 

θ=1 30*200 25*200 5 

θ=2 30*240 25*240 7 

θ=5 30*300 25*300 10 
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θ=7 30*280 25*280 15 

Table 5.1 List of Optimized dimensions(x,y) and periodic boundary. 

Thus MPI programming with proposed method can now be executed for different random 

systems. Next section describes about realization of disordered system, role of internal 

microstructure and numerical simulation of disordered system. 

 

5.3.2 Disordered system 

The disordered internal microstructure of combustion sheet (isotropic) is shown in figure 

5.7. Unburnt particles are arranged in random distribution. Heat energy released from 

burning of particles travels in all directions.  

 

 

Figure 5.7. Plot for microstructure of the disordered system (θ=1) modeled on a two dimensional 
plane.’*’ represents the burnt particles and ‘o’ is for unburnt particles.  
 

Whereas in the case of periodic system heat energy released travels in unique direction and 

hence particles in periodic system burn layer by layer. Disordered system‟s with different 

values of θ (=1, =2, =5 and =7) are simulated numerically by using both methods (MPI and 

MPI+slice). The comparison of computational time by two methods is shown in next 

section. The numerical results obtained for disordered system are explained here. Figure 5.8 

shows the comparison of ignition time profiles of a disordered system for different values of 

θ. Ignition time profile for the disordered system is linear at lower ignition temperatures. At 

higher ignition temperatures burning occurs in form of consequent jumps: relatively long 
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periods of front stopping (induction periods) are followed by the burning-out of some part 

of the sample with practically constant burning rate, and followed by a new induction period 

again. Duration of induction periods and periods of “continuous” combustion are random 

and it is connected with the random structure of the system [1-7, 10-13].  Transient 

condition is observed at initial stages of ignition because of the sudden perturbation of 

reaction kinetics. As the reaction front propagate and reach final stage of burning the 

accumulation of heat energy decreases and thus leads to self slow heating of the material. 

Experimental data on combustion of powder mixtures [6, 8] show that the process of 

reaction front propagation in actual systems is random [10-13] and is accompanied by 

fluctuations in flame structure and burning rate of system as a whole. Fluctuations observed 

in calculations are result of both random microstructure and non-linearity of the system.  

 

Figure 5.8 Ignition time profile for Isotropic and Anisotropic (θ=2). 1 Ordered 2 random systems. 
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In experiments [6,8], the change of mixture parameters and concentrations of powder 

components (e.g. a changing in stoichiometric coefficient x  in mixture SiTi x ) results in 

either regularization or stochastization of combustion process. 

A similar behavior of burning front is observed in the model under consideration. In 

numerical experiments the regularization (at lower ignition temperatures) results in less 

fluctuations of duration of induction periods and process becomes more stable, and the 

stochastization (at higher ignition temperatures) results in when combustion becomes more 

random one with long and random induction periods. The process is more regular at 

smaller  and higher values of θ; the more   and less θ the more random is the process, the 

stronger effect of fluctuation of random structure of the system on the burning front 

propagation. 

               Thermal wave or combustion front for actual systems [25-31] is observed to be 

propagating in fingering pattern. These fingers like patterns are observed in a combustion 

regime with the help of high speed video recorder. Combustion front propagates slowly in 

non flaming mode where the emitted products do not glow in visible light. The instabilities 

in the fingering pattern of combustion front are driven by the uncertainity of the reaction 

zone. Different patterns, of reaction front such as stable, irregular, periodic, fingering pattern 

with tip splitting and fingering pattern without tip splitting, are observed during experiments 

[25-31]. Similar behaviour of combustion front is observed in the present two dimensional 

discrete model. Combustion wave propagation for the disordered system is shown in Figure 

5.9, 5.10, 5.11 and 5.12. Structure of combustion wave for different ignition temperature is 

observed to be different, and propagation of combustion front is effected by ignition 

temperature. Figure 5.9 shows the structure of combustion (reaction) front at different 

ignition temperatures (ε=0.10, 0.47) for an isotropic system modeled in the present chapter. 

Parameter θ for a isotropic system is same in all directions, however the combustion front at 

different ignition temperatures is observed to be propagating in irregular pattern. It can be 

detected from figure 5.9 that the irregularity in finger patterns of combustion front increases 

at ignition temperatures near the critical value (ε=0.47). Here heterogeneity and voids in the 

internal micro structure of the mixture play a crucial role by creating the uncertainity in the 

reaction zone and destabilizing the reaction front.  
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Figure 5.9. Snapshot of burnt region for an Isotropic system at different ignition temperatures (ε). (a) t 
=19 and ε=0.46; (b) t=25 and ε=0.46; (c) t=27 and ε=0.47; (d) t=33 and ε=0.47. 

 
Developed model when simulated using eqn. (5) and (6) can reproduce the different 

fingering like patterns observed for experimental results [19-20].  Unlike in experimental 

works [25-31], where different combinations of fuel and oxidizer are mixed together and 

ignited, the combustion front is recorded and analyzed. In the developed model different 

values of y parameter (θ) are included so as to study and analyze the role of θ in affecting the 

burning process. θ=2, 5 and 7 are considered for numerical simulation. Figure 5.10 shows 

the structure of thermal wave at different ignition temperatures (ε=0.10, 0.478) for θ=2. For 

lower values of ignition temperature (ε=0.10) the combustion front moves in irregular 

pattern. In figure 5.10(a) and (b) irregularities observed are less when compared to that of 

isotropic system.  
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Figure 5.10. Snapshot of burnt region for Non Isotropic (θ=2) system at different ignition temperatures 
(ε). (a) t =0.7 and ε=0.10; (b) t=2.2 and ε=0.10; (c) t=28 and ε=0.478; (d) t=34 and ε=0.478. 

 
However as the ignition temperature increases an interesting feature of combustion front can 

be observed as shown in figure 5.10(c) and (d). The irregularities in combustion front now 

take the shape of fingers. Periodic fingering pattern and increase in the width of the fingers 

are observed for disordered system with θ=2 at ε=0.478 (shown in figure 5.10(c) and (d). As 

the combustion front propagates these periodic fingers split. Split in fingers is observed in 

figure 5.10 (d) (shown by circle). ε=0.478 is the critical ignition temperature for disordered 

system with θ=2. The heterogeneity and voids in internal microstructure for disordered 

system with θ=2 have less effect on combustion front when compared to that of isotropic 

system. And this is the reason for observing periodic finger patterns. It is also observed that 

the widths of the fingers are increased at higher ignition temperature.  The systematic study 

for the behavior of fingers pattern is also realized for disordered systems with θ=5 and 7. 

Figure 5.11 shows the structure of combustion front for a disordered system with θ=5 at 

different ignition temperatures (ε=0.10, 0.49). At lower ignition temperature the combustion 

front moves in more regular pattern (shown in figure 5.11(a) and (b)). Compared to 

combustion front observed for disordered system with θ=2 (figure 5.10(c) and (d)) at higher 
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ignition temperature, the number of periodic fingers, splits in fingers and the width of the 

fingers are increased for a disorered system with θ=5 (shown in figure 5.11(c) and (d)). In 

actual systems the finger width is determined by the ability of reaction front to release heat. 

As θ is increased, heat release for reaction cell increases, the reaction front starts exhibiting 

the fingering patterns even at lower ignition temperatures. Combustion front with periodic 

fingers is observed at ε=0.49 as shown in figure 5.11 (c). At higher ignition times the fingers 

split at the tip as shown in figure 5.11(d), this is a slow consequence of heterogeneity and 

voids in the internal micro structure of mixture.   

     

 

Figure 5.11. Snapshot of burnt region for Non Isotropic (θ=5) system at different ignition temperatures 
(ε). (a) t =0.7 and ε=0.10; (b) t=2.1 and ε=0.10; (c) t=36 and ε=0.49; (d) t=41 and ε=0.49. 

 

Figure 5.12 shows structure of reaction front for θ=7 at different ignition temperatures 

(ε=0.10, 0.50). Regular patterns without fingers as shown in figure 5.12(a) and (b) is detected 

at lower ignition temperatures (ε=0.10) where the reaction kinetics are very fast. As ignition 

time increases and reaction front propagates the length of fingers increases, as shown in 

figure 5.12(c) and (d), because of the system‟s (θ=7) ability to release more heat when 

compared to that of the system with lower values of θ. Periodic fingering patterns with 
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increase in length of fingers as shown in figure 5.12(c) and (d) is observed at higher ignition 

temperatures (θ=0.50). 

 

Figure 5.12. Snapshot of burnt region for Non Isotropic (θ=7) system at different ignition temperatures 
(ε). (a) t =0.9 and ε=0.10; (b) t=2.4 and ε=0.10; (c) t=17 and ε=0.50; (d) t=25 and ε=0.50. 

 
Increase in length and distance between fingers as shown in figure 5.12(c) and (d) is detected 

as reaction front propagates through the medium. As parameter θ is increased, there are 

enough amounts of voids (oxygen) that enhances the rate of reaction front hence there is 

increase in distance between fingers. ε=0.50 is combustion limit for θ=7.  The analysis of 

numerical results performed till now in this chapter is obtained by using slice reconfiguration 

scheme. Nevertheless to figure out the improvement in computational time achieved by slice 

reconfiguration scheme, the numerical simulation for the combustion of a disordered system 

with θ=2 at ε=0.25&0.35 is performed by using both methods. Comparison of computation 

time by both methods for disordered microstructure of system is illustrated in table 5.2. The 

slice reconfiguration scheme allowed seventeen fold and fifteen fold improvement in 

computation time for ignition temperatures ε=0.25&0.35 respectively. 
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Ignition 

tempera

ture (ε) 

Burnt 

Heat 

sourc

es 

(lx*ly) 

Unburnt 

Heat 

sources 

(lx*ly) 

 

Numbe

r of 

Cores 

Computational time 

(mins) using Methods 

Total 

combustible 

system 

Slice 

reconf

igurati

on 

0.25 

 

25 X 

240 

33 X 240 6 X 8 155 9 

0.35 25 X 

240 

33 X 240 6 X 8 237 15 

 

Table 5.2 Comparison of computational time between both methods for ignition temperatures (ε)=0.25 & 0.35. 

The numerical simulation of combustion process by proposed slice reconfiguration scheme 

is now performed with different number of nodes to estimate performance weight for each 

node. The computation time decreases with increase in available number of cores, for the 

proposed method as illustrated in table 5.3. 

 

Ignition 

temperatur

e(ε) 

Burnt Heat 

sources 

(lx*ly) 

Unburnt Heat 

sources (lx*ly) 

Cores Computa

tion time 

(mins) 

 

0.25 

25 X 240 33 X 240 1 X 8 57 

25 X 240 33 X 240 3 X 8 19 

25 X 240 33 X 240 5 X 8 12 

25 X 240 33 X 240 6 X 8 9  

25 X 240 33 X 240 7 X 8 9 

25 X 240 33 X 240 8 X 8 9 

Table 5.3 Performance weight for number of nodes by slice reconfiguration scheme. 

Slice reconfiguration scheme achieves super fast simulation of combustion process at a pre-

determined ignition temperature. The proposed scheme has an advantage of analyzing the  

dynamical properties of combustion process such as ignition time profiles, flame structure 

and average burn rate  which otherwise is difficult to record from experiments. 

5.3.3 Burn rates 

 Burn rates at different ignition temperatures are calculated using Eq.(6) for different 

periodic and disordered systems. The comparison of burn rates for ordered and random 
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systems is shown in Figure 5.13. Each single point shown in figure 5.13 is obtained by using 

slice reconfiguration scheme, which otherwise would be difficult and time consuming to 

obtain by considering total unburnt particles. Figure 5.13 shows that the burn rates increases 

with increase in parameter θ at a particular ignition temperature. The burn rates of a 

disordered system are less than the periodic system. The random internal microstructure and 

parameter θ of the powder system can play a crucial role in the combustion process and 

should be taken into account in the modeling of combustion of microheterogeneous 

systems. 

 

 

Figure 5.13 Comparison plots of burn rates calculated for Ordered and random systems. 

At certain value of higher ignition temperatures it is observed that the combustion front 

doesn‟t propagate. Combustion limit is affected by the parameter θ. As parameter θ increases 

the combustion limit increases.  

5.4 Conclusion 

The super fast numerical simulation of a gasless combustion process on two dimensional 

sheet using MPI programming is presented for the first time. Variation in microstructure of 

the system is achieved by ordered and random spacing of point particles along two 
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dimensional planes. The change in heat capacity of the mixture is addressed by the parameter 

θ along y-axis. The parameter θ allowed analysis of reaction front propagation for different 

mixtures. Ignition time profiles for ordered system is step by step and fluctuates linearly for 

random systems. It was observed that the propagation of the combustion wave for ordered 

systems is layer by layer and is determined strongly by the reaction kinetics. In random 

systems, the rate of combustion is more strongly affected by heat transfer between the cells. 

Various fingering patterns observed during experiments are reproduced with developed 

model. The burn rates are affected by θ, and increases with increase in θ at particular ignition 

temperature.  

Multi fold improvement in computation time with accuracy is obtained by using slice 

reconfiguration scheme. As the number of available nodes increases, the computation load 

on individual core decreases. MPI programming provided an accurate and high performance 

parallel computing of Combustion process. The computer based indigenous modeling using 

MPI programming facilitated faster computation and detailed diagnostics of two dimensional 

combustion processes  
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CHAPTER 6 

Conclusion and Future Scope 

  In conclusion, the combustion process is simulated and burn rates are calculated numerically 

for heterogeneous combustion using one and two dimensional mathematical modelling. 

Numerical calculations performed for simulation of combustion process is single parametric 

one and depends on ignition temperature (ε). Numerical results show that the burn rates 

sensitively depend on internal microstructure. The internal microstructure of actual 

heterogeneous mixtures is apriori unknown and changes with mixing, packing and 

percentage of diluters. The complications and effects of internal microstructure on 

combustion process are explained by introducing the randomness in positioning the 

neighbouring cells.  Different random distributions are utilized for simulating the 

combustion process. The systematic study for the effect of nature of heat release on 

combustion process is also performed by considering two cases of distribution of heat 

release one with ordered distribution and the other with randomized. Particularly the normal 

and gamma distribution of spacing neighbouring cells can explain actual combustion process. 

Normal distribution of adjacent cells explains combustion process at higher ignition 

temperatures whereas gamma distribution of adjacent cells is more accurate for lower 

ignition temperatures. The nature of distribution of heat release has impact on both the burn 

rate and combustion limit.  

     The obtained agreement of numerical and experimental dependences )(  augurs well for 

the discrete combustion model of heterogeneous systems under consideration. The random 

structure of the powder system can play a crucial role in the combustion process and should 

be taken into account in the modeling of combustion of microheterogeneous systems. This is 

a consequence of the nonlinear interaction of the system structure and the thermal wave, 

which creates the features in propagation of combustion wave. This is an important result of 

this study. The structure of the system cannot be considered as an unchanged one, and it can 

vary with changes in the size of the particles of dispersed components or their 

concentrations, which results in changing in the nature of combustion process and in 

burning rate, even at a constant burning temperature. This is confirmed by the experimental 

data. Some features of combustion of actual powder systems can be described by 

regularization or stochastization of the system when, the structure of the system becomes 
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more ordered, or, on the contrary, disordered due to the changing of concentration of 

disperse components. The limiting case of stochastization of the mixture is its clustering, 

when individual hot-spots are collected into the compact groups (clusters) and act as the 

larger hot spots in the combustion process. These results are of fundamental importance, 

because earlier the effect of the structure of system on combustion process either was 

neglected, or assumed that the structure of the system does not change with changing in the 

concentration and dispersion of the components. The analysis in chapter 2 shows that the 

combustion process becomes very sensitive to the structure of the system at high ignition 

temperatures: the higher ignition temperature, the higher the sensitivity. Thus, the presence 

of random heterogeneities in the system can have a weak affect on the combustion process 

at low ignition temperatures, but can result in significant fluctuations of burning rate and 

even long periods of stopping of burning front (big ignition delays) at high ignition 

temperatures. The heterogeneities of the system are the precisely that obstacle, on which a 

termination of combustion occurs at suprathreshold ignition temperatures. 

 

      Numerical calculation of burn rate is obtained after simulation of 40 realizations of 

random distributions of adjacent cells. This numerical exercise of calculating burn rate is time 

consuming and needs dedicated computing resource. A numerical technique is proposed for 

the calculation of burn rate of a random system based on the knowledge gained from 

statistical analysis performed in chapter 2. Burn rate of a random system can be calculated 

from the discrete probability between two limits. It is interesting to note that the width of 

limits remains same for different shaping parameter, however changes for ignition 

temperature. This numerical technique is also extended to find the combustion limit. This 

numerical technique can become a hand on tool to predict the burn rate of heterogeneous 

mixture if the internal microstructure is known. The present technique can be extended to 

problems that involve quantification of average physical parameters (flow rate, propagation 

of reaction front and combustion limit) in monte carlo simulations.  

           The effect of heat loss on propagation of combustion front is also studied, and it is 

observed from numerical experiments performed in chapter 4 that the heat loss affects the 

combustion limit but not the burn rate. As heat loss increases in the system the combustion 

limit decreases because of the increase in thermal runaway.  

       Structure of combustion front or burnt region is obtained by mathematical modelling and 

numerical simulation of combustible sheet. An indigenous slice reconfiguration scheme with 
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parallel computing is proposed to reduce the computation time. Numerical results show that 

burn rate depends on internal microstructure and parameter θ of the system. The super fast 

numerical simulation of two dimensional combustion processes is achieved by slice 

reconfiguration scheme through MPI programming. The computation time required to 

obtain a burn rate numerically using C program is of the order of multiple months and is 

reduced to 150 minutes using MPI programming and further improved to 9 minutes using 

slice reconfiguration scheme through MPI. The super fast simulation of combustion process 

allowed with detailed analysis of dynamical combustion process. Snapshots of burnt region 

shown in chapter 5 resembles finger like patterns.      

              The actual powder systems are the three-dimensional ones, the particles in them have 

the finite sizes, and the internal structure of the mixtures is automatically formed in the 

process of their preparation, depending on the sizes and concentrations of the components. 

Accordingly, if regularization or a clusterization of the system occurs, it must be a result of 

the system composition, but not specified as an input data. For this reason, a more natural 

way is the direct simulation of the structure of the system, based on one of the method of 

packing of particles, and the subsequent direct calculation of the combustion process, which 

automatically takes into account the actual structure of the system, including its possible 

regularization or clustering. As applied to actual powder mixtures this work is planned in the 

next stage of this research. The numerical exercises performed in chapters 2, 4, and 5 are the 

intermediate steps in simulating the three dimensional combustion process.  

           The in house C code for simulation of three dimensional combustion process is built, 

however the optimized dimensions of parameter are yet to be obtained. Numerical 

simulation of three dimensional combustion process requires huge computing sources and 

dedicated work station for multiple months. It would be very interesting to see that burn 

rates of three dimensional system can be obtained by utilizing the numerical technique 

shown in chapter 3.  
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