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Merozoites once released into the bloodstream invade erythrocytes and undergo multiple 

intraerythrocytic cycles. This phase elicits the clinical manifestation of the disease. In the 

erythrocytes they become trophozoites which, in case of P. falciparum, develop into new 

merozoites within 48 hrs. After a variable number of erythrocytic schizogony cycles, some of the 

merozoites differentiate into gametocytes (sexual blood stages), which are taken up by the 

mosquito during a blood meal. Gametocytes differentiate into gametes, and sexual reproduction 

results in the formation of an ookinete, which traverses the mosquito midgut epithelium and 

develops into oocysts, leading to the release of sporozoites that migrate to the salivary glands.          

Invasion	of	RBCs	by	Plasmodium	

The erythrocyte invasion by the parasite is a crucial step and is vital to our understanding of the 

pathogenesis of malaria (Chitnis and Blackman, 2000). Invasion is a highly specific, ordered and 

sequential process lasting less than a minute (Gilson and Crabb, 2009). Numerous receptor–

ligand interactions, and a number of merozoite proteins were implicated in invasion of the RBC 

by the parasite (Cowman and Crabb, 2006). It is well recognized that the components of initial 

attachment include antigens on the surface of the merozoite, such as merozoite surface protein 1 

(MSP1) which is a GPI-anchored molecule (Gilson et al., 2006; Goel et al., 2003). Further, it is 

believed that MSP1 is the most abundant of the proteins found in that location (Goel et al., 2003; 

O'Donnell et al., 2001) and its expression is restricted to late blood stages and liver stages. At the 

time of invasion, MSP1 undergoes proteolytic cleavage to produce a 42 kDa C-terminal 

fragment, which is further processed to yield fragments of 33 and 19 kDa. The 19kDa fragment 

of the MSP1 remains on the surface of a merozoite that is invading an erythrocyte (Blackman et 

al., 1990). After attaching to the susceptible red cell the merozoite undergoes apical re-

orientation, which involves the integral membrane protein called the apical membrane antigen 

(AMA1) (Fig. 3) (Mitchell et al., 2004). The parasite then uses actin-based motility to enter 

erythrocyte (Baum et al., 2008) where in it slowly moves into a localized invagination of the red 

cell which subsequently envelops it as the parasitophorous vacuolar membrane (PVM). 

Identification of the molecules on the erythrocyte membrane to which merozoites bind has been 

the subject of intensive research. Pasvol et al., first identified the red cell sialoglycoproteins or 

‘glycophorins’ (GPs) especially GPA and GPB as the major receptors that mediate binding and 

subsequent invasion of the merozoites (Pasvol et al., 1982). Of the sites involved on GP, the O-
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  8 

distributed on the surface of non-O RBCs (Carlson and Wahlgren, 1992).  The high sensitivity of 

P. falciparum rosettes in type O blood to heparin and N-sulfated glycans suggest that malaria 

parasites use a GAG on the surface of RBCs as a rosetting receptor (Carlson et al., 1992; Carlson 

and Wahlgren, 1992). CR1 seems to be an important rosetting receptor, as it is widely distributed 

on the RBC surface and some parasites cultured in CR1-deficient RBCs lose their capacity to 

form rosettes (Rowe et al., 1997). Further, some serum proteins including IgM (non-immune) 

fibrinogen and albumin are also involved in rosette formation (Treutiger et al., 1998; Treutiger et 

al., 1999). The mechanisms by which rosetting leads to disease remain obscure till date. Rosette 

formation has not convincingly been observed in vivo. Rigorous experiments with a rosetting and 

non-rosetting parasite line, under static conditions or with red cells maintained under conditions 

of flow (i.e. in suspension), demonstrated that rosetting neither increases invasion nor targets 

merozoites within a rosette into adjacent uninfected cells (Clough et al., 1998). Rosetting may 

perhaps reflect the phenotypic expression of some other parasite property such as adherence to a 

specific cell type, which in turn relates to pathogenesis. 

Cytoadherence	

Cytoadherence is a survival strategy adopted by the parasite to protect itself from the host 

immunity and to avoid splenic clearance. In this process the mature PRBCs specifically bind to 

endothelial cells in post-capillary venules (Fig 6). The process results in microcirculatory 

obstruction and subsequent hypoxia, metabolic disturbances, and multiorgan failure, which are 

detrimental to the host. Understanding the molecular events involved in these adhesive 

interactions is therefore critical both in terms of pathogenesis and implications for therapeutic 

intervention. SEM studies show a number of regular, symmetrically arranged ‘knobs’ on the 

surface of the infected cell as the parasite of P. falciparum matures (Howard, 1988; MacPherson 

et al., 1985) . It is through these knobs the parasitised red cell mediate binding to endothelial 

cells in the deep tissues, although parasites without knobs are capable of cytoadherence in vitro 

(Biggs et al., 1990; Udomsangpetch et al., 1989a). As the parasite matures inside, the red cell 

becomes spherical and less deformable. Parasites sequester in various organs including heart, 

lung, brain, liver, kidney, subcutaneous tissues, and placenta. The various endothelial cells in 

these organs and syncytiotrophoblasts in placenta express different and variable amounts of host 

receptors. To successfully adhere to these cells, the parasite can bind to a large number of 
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receptors. The adhesion phenotype is not homogenous, and different parasites can attach to 

variable numbers and combinations of host receptors (Beeson et al., 1999; Newbold et al., 1997). 

This variability is believed to affect the tissue distribution and pathogenesis of parasites. Till date 

five parasite-derived proteins are known to be associated with the cell membrane of an infected 

erythrocyte at various stages of the developmental cycle (Howard, 1988). Of these five parasite 

derived proteins, three are associated with knobs [P. falciparum erythrocyte membrane proteins 

1 and 2 (PfEMP1 and PfEMP2) and PfHRP1 or KAHRP]. Of these three, PfEMP1 is the only 

protein that extends beyond the cell surface to mediate cytoadherence (Magowan et al., 1988), 

whereas PfEMP2 and PfHRP1 or KAHRP remain on the internal face of the erythrocyte 

membrane in association with electron-dense material. The proteins appear to be exported from 

the intracellular parasite through the erythrocyte cytoplasm to the surface membrane via a 

complex system of vesicle trafficking pathways (Pouvelle et al., 1994). PfEMP-1 (molecular 

weight 200-350 kDa) appears to be the most important molecule expressed on the PRBC and 

mediates its binding to various receptors (Chen et al., 2000b; Newbold et al., 1999). PfEMP1 is 

encoded by the large and diverse var gene family that is involved in clonal antigenic variation 

and plays a central role in P. falciparum pathogenesis (Baruch et al., 1995; Smith et al., 1995; Su 

et al., 1995). The extracellular region of PfEMP1 has multiple adhesion domains like DBL 

(Duffy binding like) and CIDR (1-2 cystine-rich interdomain regions), that can simultaneously 

recognize several host receptors including platelet-endothelial cell adhesion molecule (PECAM), 

the blood group A antigen, non-immune IgM, a heparan sulphate-like glycosaminoglycan and 

CD36 (Chen et al., 2000a). The binding domains for several host receptors were recently 

mapped to various DBL and CIDR present on the extracellular region of PfEMP1 (Smith et al., 

2001). Recently Pouvelle et al, detected two previously unknown parasite proteins on the surface 

of ring-stage PRBC, the ring surface proteins (RSP 1 and 2) (Pouvelle et al., 2000). These 

proteins disappear shortly after the start of PfEMP1-mediated adhesion. It is thus possible that 

not only is the degree to which PRBCs cytoadhere important in pathogenesis, but also the stage 

in the erythrocyte life cycle when cytoadherence commences. 
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Sequestration	

The histopathological hallmark of cerebral malaria is the sequestration of RBCs containing 

mature forms of parasite (trophozoites and meronts) to the cerebral microvasculature 

(MacPherson et al., 1985). This event is thought to cause the major complications of falciparum 

malaria, particularly cerebral malaria (White and Ho, 1992). The sequestration of PRBCs in the 

relatively hypoxic venous beds allows optimal parasite development and prevents the PRBCs 

from splenic clearance (Marsh et al., 1988). Parasite binding to the endothelial cells is mediated 

by a group of variant surface antigens expressed at the PRBC surface during development. The 

best described is P. falciparum erythrocyte membrane protein-1 (PfEMP1), a polypeptide of 200-

350kDa, which is encoded by a family of about 50-150 variant genes associated with different 

binding phenotypes (Baruch et al., 1995; Chen et al., 1998; Su et al., 1995). Each parasite 

expresses the transcript of only one variant gene at any one time but can switch to express a 

different variant gene which is about 2% per generation in vitro in the absence of any 

immunological selection mechanisms acting at the level of PRBC (Roberts et al., 1992). 

However if all the parasites in a typical human infection, were to switch at this rate the variant 

repertoire would be rapidly exhausted and therefore it was hypothesized that in vivo only a 

limited number of antigenic types are expressed, and homologous anti-variant antibody acts as a 

signal for switching (Sherman et al., 2003). Nevertheless it is not known how such switching 

would influence adhesion patterns.  

PfEMP1 binds to many host receptors on endothelial cells, among which PfEMP1 interaction 

with CD36 and the intercellular adhesion molecule 1 (ICAM1) are well studied (Craig and 

Scherf, 2001; Newbold et al., 1997). PfEMP1 binding to host endothelium does not always lead 

to pathogenesis, as most infections result in malaria that is devoid of any cerebral complications 

(Snow and Marsh, 1998). However it is not clear at present as to what factors contribute to the 

transition from uncomplicated malaria to cerebral malaria. One possibility is that expression of 

particular binding properties will lead to distinct patterns of sequestration and to pathogenic 

consequences. For example, sequestration of PRBC within the placenta causes premature 

delivery, low birth weight, and increased mortality in the newborn and anemia in the mother. 

Unlike parasites collected from non-pregnant individuals, PRBC isolated from placentas bind to 

CSA but not to CD36, the critical host receptor for sequestration in microvasculature (Beeson et 
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al., 1999; Fried and Duffy, 1996). One possible explanation to this observation is that PfEMP1 

adhesion to these receptors was selected to allow the parasite to sequester not to endothelium but 

in placenta, perhaps a site of reduced immunity. Moreover, CSA-binding parasites express 

PfEMP1 with a DBLγ domain that binds CSA and a non-CD36-binding CIDR1 (Buffet et al., 

1999; Gamain et al., 2001). In contrast, CD36-adherent parasites express a PfEMP1 with a 

CD36-binding CIDR1 (Gamain et al., 2001). The glycosaminoglycan chondroitin-4-sulfate 

(CSA), is expressed throughout the microvasculature along with various proteoglycans such as 

thrombomodulin, has been shown to mediate the cytoadherence of IRBC selected on Chinese 

hamster ovary cells (Rogerson et al., 1995). CSA is the principal molecule mediating 

cytoadherence in the human placenta, where it is expressed on syncytiotrophoblasts (Fried and 

Duffy, 1996).  The glycoprotein ICAM-1 acts as a ligand for the leukocyte integrin lymphocyte 

function-associated antigen- 1 (LFA-1) and plays a central role in the generation of an immune 

response (Rothlein et al., 1986). ICAM-1 is also the receptor for human rhinoviruses (Staunton 

et al., 1989). Further, proinflammatory cytokines like tumor necrosis factor-α (TNF-α), 

interleukin-1 (IL-1), and interferon-γ (IFN-γ) induces expression of ICAM-1 on endothelial cells 

during inflammation (Pober et al., 1987).  Molecular studies have shown that PRBC binds to the 

first immunoglobulin domain of ICAM-1 at a site that is different from the binding sites of both 

LFA-1 and rhinovirus (Berendt et al., 1992; Ockenhouse et al., 1992a). Further it was shown that 

PRBC bind to three other endothelial receptors viz., VCAM, E-Selectin and NCAM (Amodu et 

al., 2005; Ockenhouse et al., 1992b; Pouvelle et al., 2007).  

   Cerebral malaria has mortality between 25 and 50% and, without treatment, is fatal within 24-

72 h. Although the underlying causes of the pathogenesis of cerebral malaria remain unclear, the 

most plausible explanation is provided by the mechanical/sequestration hypothesis. According to 

this hypothesis, disease severity in P. falciparum malaria is related more to the number of 

parasites sequestered than to the number circulating parasites. Further, the neuropathologic 

effects that is frequent in cases of cerebral malaria result from the occlusion of microvessels in 

the brain by clumps of sequestered parasitized red blood cells (Berendt et al., 1994). 
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Cytokines	in	the	pathogenesis	of	CM	

The importance of cytokines, especially TNF-α and IFN-γ, and their contribution to severe 

malaria have been extensively surveyed (Grau et al., 1987; Hommel, 1996; Miller et al., 1994). 

High circulating levels of TNF-α and IFN-γ are more often found in patients with severe malaria 

than in uncomplicated cases (Kwiatkowski et al., 1990). Extensive deposition of TNF-α, IFN-γ, 

IL-1, IL-6 in organs with massive sequestration (especially in brain) is more frequently seen in 

patients who died of CM. TNF is also raised in placental malaria and is associated with low birth 

weight (Fried et al., 1998; Moormann et al., 1999). Grau and colleagues hypothesized that 

excessive TNF-α production plays a decisive role in the pathogenesis of murine CM (Grau et al., 

1987). This fact is backed by the subsequent findings: (i) elevated levels of serum TNF-α is 

found only at the time of the neurological complications; (ii) a single injection of anti-TNF-α 

antibody on day 4 or 7 fully protected infected mice from cerebral malaria without modifying the 

parasitemia and (iii) injection of recombinant TNF-α to a CM-resistant strain of mouse makes it 

susceptible to CM. In addition, de Kossodo and Grau found decreased levels of IL-4 (which 

antagonizes the effects of TNF-α) along with upregulation of TNF-α mRNA in the brains of CM-

susceptible mice suggesting a role for TNF-α in the pathology of CM (de Kossodo and Grau, 

1993). Further it was found that in tumor necrosis factor receptor 2 (TNFR2) deficient mice are 

resistant to CM (Lucas et al., 1997). However in another study, infected mice were not protected 

even after administration of TNF-α neutralizing antibody (Hermsen et al., 1997b). In a study 

involving 178 Gambian children, Kwaitowski et al, found that plasma TNF-α level in fatal cases 

involving CM were at least 10 fold higher than their normal counterparts (Kwiatkowski et al., 

1990). This suggests that excessive TNF-α production during the pathology of CM makes 

humans susceptible to neurological manifestations and its fatal outcome. Paradoxically, in 

another study involving 600 Gambian children it was found that neurological sequelae increased 

after the administration of TNF-α antibody suggesting that the antibody may act to retain TNF 

within the circulation and thereby prolong its effect (van Hensbroek et al., 1996). TNF-α 

produced by monocytes or glia enhances the release of cytokines, ROS, nitric oxide, superoxide 

production and potentiates glutamate receptor induced neurotoxicity. All these factors have been 

implicated in the pathogenesis of cerebral malaria. However, recent studies strongly suggest that 
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murine CM requires Lymphotoxin-α (LT-α) rather than TNF-α as mice deficient in LT-α were 

resistant to CM, whereas those deficient in TNF-α remained susceptible (Engwerda et al., 2002).  

The proinflammatory cytokine IFN-γ has been shown to reduce hepatocyte invasion by malaria 

sporozoites and conferred protection against both hepatic and asexual blood stages of malaria 

(Ferreira et al., 1986; Maheshwari et al., 1986; Ockenhouse and Shear, 1984). Moreover, invitro 

and invivo anti parasitic effects of IFN-γ have been demonstrated conclusively (Bienzle et al., 

1988; Clark et al., 1987; Ockenhouse et al., 1984; Rockett et al., 1991).  In human cases serum 

levels of IFN-γ in immunity and pathology of CM were often conflicting, where in there is a 

prominent rise in IFN-γ levels in serum of patients infected with P. falciparum (Kwiatkowski et 

al., 1990; Ringwald et al., 1991), but such an increase was not reported in other studies (Butcher 

et al., 1990; Kremsner et al., 1989). Apart from its anti-parasitic effect, IFN-γ could also be 

deleterious to the host by virtue of its pro-inflammatory actions (Ho et al., 1995).  Injections of 

neutralizing monoclonal antibody against recombinant murine IFN-γ prevent cerebral 

complications in CM susceptible mice (Grau et al., 1989).  Northern blot analysis and semi-

quantitative PCR analysis showed that there is significant accumulation of IFN-γ mRNA along 

with TNF-α, and a decreased expression of IL-4 and TGF-β genes in the brains of CM-

susceptible mice compared with CM-resistant and uninfected mice(Grau and de Kossodo, 1994). 

Increased expression of IFN-γ in the brain of CM susceptible mice results in the activation of 

endothelial cells, macrophages and glial cells. Moreover, IFN-γ may upregulate ICAM-1 and 

TNF receptors on cerebral vascular endothelial cells and could also prime macrophages to 

release more TNF-α rendering them more susceptible to TNF-α (Grau and de Kossodo, 1994).  

Low doses of IL-1 prevent the development of cerebral complications in C57BL/6 mice infected 

with PbA. Further IL-1 given intraperitoneally at a dose of 80ng for 6 consecutive days starting 

from day 1 of infection suppressed the parasitemia (Curfs et al., 1990). However it was not clear 

as to how the IL-1 treatment suppresses parasitemia and prevents CM. Kern et al., suggested that 

TNF-α and IL-6 could serve as markers of severe malaria in human P. falciparum infections 

(Kern et al., 1989). Although elevated levels of serum IL-6 were found in both CM- susceptible 

and CM –resistant mice infected with P. berghei ANKA, it was suggested that IL-6 does not play 

a major role in the pathogenesis of ECM, since passive immunization against IL-6 did not 

prevent ECM (Grau et al., 1990). IL-10 plays a protective role against experimental cerebral 
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malaria by inhibiting PbA antigen-specific interferon-gamma (IFN-gamma) production in vitro 

but not tumour necrosis factor (TNF) serum levels in vivo (Kossodo et al., 1997).  

Central	nervous	system	is	the	major	site	of	complications	
during	malaria	infection	

According to immunopathogenesis hypothesis host toxic mediators, directed against the 

intraerythrocytic form of the parasite, could cause non-specific tissue damage due to their 

untargeted mechanism of action (Clark et al., 1981). Due to this non-specific mode of action the 

CNS vascular endothelium is damaged resulting in cerebral oedema and haemorrhage ultimately 

leading to coma and death. Indeed cerebral microvascular injury is a common phenomenon of 

both murine CM and human CM (Brown et al., 1999; Chang-Ling et al., 1992; Neill and Hunt, 

1992; Thumwood et al., 1988). Supporting evidence put forward by Medana et al., suggests that 

astrocytes and microglia are actively involved in the development of the cerebral complications 

associated with malaria infection. Accordingly BBB disruption during the pathogenesis of CM 

results in the release of cytokines, malarial toxins and immune cells into the brain parenchyma 

thereby locally altering the immune and supportive functions of astrocytes and microglia. 

Activated astroglia and microglia in turn produce proinflammatory mediators and toxins which 

are detrimental to the neurons leading to CNS dysfunction (Medana et al., 2001). 

Astrocytes, collectively known as astroglia are a subtype of glial cells found in the CNS. They 

perform many functions including maintaining acid-base, electrolyte and neurotransmitter 

balance, maintaining BBB properties in the vascular endothelium and regulating the 

concentration of neurotransmitters, such as glutamate, in the extracellular fluid (Sykova et al., 

1992; Walz, 1992). Alteration in any of these astrocyte functions has profound effects on the 

normal neuronal function. Astrocytes express many inflammatory mediators and their receptors 

in the injured or infected brain. When stimulated in vitro by a variety of agents such as viruses, 

IL-1, TNF-α, IFN-γ, LPS and calcium ionophore,  primary rodent astrocytes produce IL-1, IL-3, 

IL-6, TNF-α, IFN-α and IFN-β (Benveniste et al., 1990; Frei et al., 1985; Frei et al., 1989; 

Lieberman et al., 1989; Sawada et al., 1989). A role for astrocytes in immune-mediated 

neurological disease has been demonstrated in EAE where in, production of TNF-α by the 

astrocytes has been correlated with the severity of the disease (Chung et al., 1991). Furthermore, 
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astrocytes in HIV-1 infected brains express TGF-β (Wahl et al., 1991). Astrocytes also 

contribute to the inflammation within the CNS by producing chemokines such as RANTES and 

MCP-1 which are thought to be vital for leucocyte migration and activation (Persidsky et al., 

1999). Using retinal wholemount model Medana et al., have shown astrocytes play a critical role 

in the pathogenesis of experimental cerebral malaria (ECM). Redistribution of astrocytes is an 

early event following malaria inoculation in mice, and it progresses to astrogliosis and eventually 

to loss of astrocytes in some locations at the time when mice are exhibiting the symptoms of 

cerebral malaria (Medana et al., 1996). Further S-100B an astrocyte marker was found to be 

elevated in cerebrospinal fluid (CSF) of patients with neurological symptoms and was linked to  

neurological outcome, disability and death (Medana et al., 2007b).  

Microglial cells are the resident macrophages of the CNS and comprise 5–20% of the total glial 

population in the brain. Three types of microglia are known to exist in the CNS viz., amoeboid, 

ramified, and reactive microglia, although these are currently viewed as different forms of a 

single cell type. Amoeboid microglia are active macrophages during development and are 

precursors of resting or ramified cells, which can, in response to a variety of insults such as 

infection, traumatic injury, or ischemia, reactivate in the postnatal brain, assume an amoeboid 

shape, and move to the site of injury (Thomas, 1992). Microglia secretes IL-1, IL-6, TNF-α like 

all other tissue macrophages when stimulated by LPS and IFN-γ (Frei et al., 1989; Frei et al., 

1987; Giulian et al., 1986; Giulian and Lachman, 1985; Lavi et al., 1988; Sawada et al., 1989). 

Microglia are the major antigen-presenting cell of the CNS and they have been shown to express 

major histocompatibility class I and II molecules as well as costimulatory molecules such as B7, 

ICAM-I and the αXβ2 integrin, which may activate T cells in the presence of specific antigen 

(Raivich et al., 1999). In HIV-1 encephalitis, monocyte migration into the brain parenchyma is 

enhanced by the activated microglia through the production of chemokines (Persidsky et al., 

1999). Furthermore, proinflammatory cytokines such as IFN-γ induces major histocompatibility 

complex class II molecules on the microglia (Vass and Lassmann, 1990; Wong et al., 1984). 

Reactive microglia expressing major histocompatibility complex class II have been found in 

affected areas in post-mortem brains of patients with senile dementia of the Alzheimer’s type, 

Parkinson’s disease, Huntington’s chorea and multiple sclerosis (Hayes et al., 1987; Itagaki et 

al., 1989; Mattiace et al., 1990; McGeer et al., 1988; McGeer et al., 1987). Major 

histocompatibility complex class II expressing cells concentrated at the BBB could modulate the 
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immune response by presenting antigen to CD4+ T cells. Antigen presentation occurring locally, 

resulting in T-cell activation, could result in a sustained or amplified immune response that could 

contribute to cerebral complications. In human CM there has been a report of cuffs of 

lymphocytes and microglia around veins (Janota and Doshi, 1979). Using a retinal whole-mount 

technique Medana et al., reported that in the early stages of ECM, microglia were found to have 

distinct morphologic changes which includes a decrease in process length, an increase in soma 

size, an increasingly amoeboid appearance, and vacuolation. Redistribution of the microglia to 

the venous side of the vascular endothelium, with compromised barrier properties, was also 

found (Medana et al., 1997a). TNF-α production by microglia, astrocytes, peripheral blood 

monocytes adherent to the meningeal vessels, and cerebrovascular endothelial cells prior to onset 

of cerebral symptoms was also detected (Medana et al., 1997b). 

The pathophysiological events leading to neurological damage and sequelae in CM are not 

known. Earlier Medana et al proposed Axonal injury as a key event leading to CNS dysfunction 

in CM infected individuals (Medana et al., 2002). Earlier we have reported the activation of 

intrinsic cell death cascade in the brain during the pathology of murine cerebral malaria (Kumar 

and Babu, 2002). PbA infection in mice also leads to disturbances in calcium homeostasis 

leading to the activation of calpains, calpastatin and cleavage of spectrin (a substrate for active 

caspase-3) in the brain during fatal murine cerebral malaria (Shukla et al., 2006). The role of 

calpains in mediating neuronal cell death in CM infected patients is well documented (Medana et 

al., 2007a). A recent study in experimental cerebral malaria by Lackner et al., have proposed a 

role for active caspase-3 in mediating neuronal cell death during the late stage of the disease 

(Lackner et al., 2007). This fact is further supported by observations where in significant 

increase in Metallothionein I + II (MT-I + II) expression in reactive astrocytes, 

macrophages/microglia and vascular endothelium is accompanied by a localized CM-induced 

neuronal apoptosis (detected by TUNEL) indicating severe and irreversible pathology (Wiese et 

al., 2006). Eeka et al., in a recent paper linked the activation of multiple suicidal proteases 

(Caspase-3, Calpain-1 and Cathepsin B) to breakdown of neuronal cytoskeletal proteins leading 

to neuronal demise in experimental cerebral malaria (Eeka et al., 2011). Seemingly many more 

pathways are involved as revealed by our latest findings wherein we have proposed the 

activation of c-Jun N-terminal kinases playing a critical role in neuronal cell death in 

experimental cerebral malaria (Anand and Babu, 2011). 
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Scope	of	the	present	study	

The following specific questions were addressed to delineate the mechanisms of host parasite 

interactions set in vivo during the course of cerebral malaria pathology: 

1) To study whether JNK signaling pathway is activated in ECM. 

2) To study whether administration of SP600125 (a specific JNK inhibitor) is 

neuroprotective in ECM. 

3) To study whether ER stress signaling pathway is activated in experimental cerebral 

malaria (ECM). 

4) To study whether administration of Pentoxifylline (TNF-α inhibitor and 

immunomodulatory agent) is neuroprotective in ECM. 
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are	activated	in	the	brain	
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c‐Jun	N‐Terminal	kinases	are	activated	in	the	brain	during	
the	pathology	of	experimental	cerebral	malaria	

  Cerebral malaria (CM) is a life threatening complication of Plasmodium falciparum 

characterized by the sequestration of parasitized red blood cells (PRBC), extensive endothelial 

apoptosis, blood brain barrier disruption followed by T-cell infiltration, secretion of 

proinflammatory cytokines, microglial activation and neuronal cell death (Idro et al., 2005; 

Lackner et al., 2007; Medana et al., 1997a; Pongponratn et al., 2003; Potter et al., 2006; Wiese 

et al., 2006). Histopathological and electron microscopic analysis of post mortem brain tissues 

obtained from CM infected individuals reveal adherence of PRBC and inflammatory cells to the 

brain microvasculature, petechial hemorrhages in the brain parenchyma, neurological lesions and 

perivascular oedema (Pongponratn et al., 2003). Because of its resemblance to the human 

disease, Plasmodium berghei ANKA (PbA) infection in mice has been the widely used model to 

unravel cellular and molecular mechanisms involved in the pathogenesis of cerebral malaria (de 

Souza and Riley, 2002).  Even though, some apoptotic and necrotic pathways which are 

activated in the brain during cerebral malaria had been reported from our lab (Kumar and Babu, 

2002; Shukla et al., 2006) and elsewhere (Lackner et al., 2007; Wiese et al., 2006) several 

signaling pathways are not yet completely studied.   

c-Jun N-terminal kinases (JNK) belong to the family of mitogen activated kinases called MAP 

kinases, which are activated in response to inflammatory cytokines and environmental stress 

conditions. There are three isoforms of JNK: JNK 1, 2 and 3, of which JNK 1 and 2 are 

ubiquitously expressed while the expression of JNK3 is restricted to the neuronal and cardiac 

tissues (Davis, 2000). JNK, for its complete activation needs to be phosphorylated at Thr 183 and 

Tyr 185 and this is mediated by either JNKK1/MKK4/SEK1 or JNKK2/MKK7. These JNKKs in 

turn have differential preferences for the phosphorylation sites, with JNKK1 preferring Tyr 185 

and JNKK2 preferring Thr 183 residue. Further, the activity of JNK is also regulated by protein 

phosphatases and scaffold proteins like JIP, NFκB, β-arrestin and JSAP1. Once activated, JNK 

translocates into the nucleus and phosphorylates c-Jun, its major downstream substrate, inducing 

transcription-dependent apoptotic signaling pathway. Moreover, it was reported that JNK also 

promotes apoptosis in cardiac myocytes by interacting with mitochondrial apoptotic machinery 

(Aoki et al., 2002). The role of JNK in neuronal cell death has been well documented in several 
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neurodegenerative diseases like, Alzheimer’s and Parkinson’s disease (Colombo et al., 2009; Pan 

et al., 2009), cerebral ischemia (Kuan et al., 2003), excitotoxicity- induced apoptosis (Yang et 

al., 1997) and in axotomy-induced cell death (Keramaris et al., 2005). In the current study we 

addressed the possible role of JNK in the induction of neuronal cell death during ECM.  Our 

results show for the first time that JNK is involved in the neuronal cell death. 

Materials	and	Methods	

Pathogen-free C57BL/6J mice 6-8 weeks old, weighing 18–24 g, were obtained form NCLAS 

(National Center for Laboratory Animal Sciences), Hyderabad. All the protocols followed for the 

use of animal experimentation were strictly in accordance with the institutional and national 

ethical committee guidelines. C57BL/6J mice of either sex were inoculated intraperitoneally with 

106 parasitized red blood cells, suspended in 200μl of PBS (pH 7.4). Uninfected mice of same 

age and sex were used as controls. Parasitemia was assessed from Geimsa-stained thin smears of 

tail blood prepared every day post inoculation (PI). On day 6-9 PI mice displayed clinical signs 

typical of CM such as ataxia, hemiplagia, seizures, paralysis and coma followed by death, with 

parasitemias not exceeding 15%. Brains were dissected out from control and PbA infected 

animals at 3rd, 5th and 7th day PI, snap frozen in liquid nitrogen and stored in -800C until further 

use.      

Western Blotting: Western immunoblotting was performed according to the procedure published 

earlier [32]. Briefly, 50µg of tissue lysates were resolved on 10% SDS-PAGE and transferred 

onto nitrocellulose membrane and probed with rabbit polyclonal antibodies raised against p-

MKK4, JNK, p-JNK, p-c-Jun and β-tubulin (Cell Signaling Technology; USA). Then, blots were 

probed with the HRP-conjugated anti- rabbit secondary antibodies and developed with ECL 

reagent (Pierce). Immunoreactivity was analyzed quantitatively using ImageJ software (NIH). 

JNK activity assay: JNK activity was performed using a nonradioactive kinase assay kit 

according to the manufacturer’s instructions (Cell Signaling Technology). Briefly, tissues were 

homogenized in lysis buffer, sonicated on ice, and spun at 14000 x g for 15 min. Protein content 

in the supernatant was determined by the method of Bradford (Biorad). Endogenous JNK was 

immunoprecipitated from 200µg of cell lysate with c-Jun fusion protein linked to glutathione 

agarose beads overnight at 40C. Precipitates were washed twice with lysis buffer and twice with 
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kinase buffer provided along with the kit. The kinase reaction was initiated by suspending the 

pellet in kinase buffer supplemented with cold ATP for 30 min at 300C. The reaction was 

terminated by the addition of 3X sample buffer and samples were resolved by 10% SDS-PAGE 

followed by western blot analysis. Membranes were probed with p-c-Jun antibody provided 

along with the kit.  

Immunohistochemistry: Immunohistochemistry was performed according to an earlier published 

protocol (Bhaskara et al., 2006) on coronal sections through the straitum of control and infected 

mouse brain cortices and probed with p-JNK antibody (1:100 dilution).  For immunoflouroscent 

analysis, the same procedure was followed except that the sections were not pre-treated with 1% 

hydrogen peroxide.  Briefly, after deparaffinization, sections were blocked for 1 hr, and probed 

with p-JNK antibody (1:100) overnight at 40 C. After washing with PBS, sections were incubated 

for 1 hr with Alexaflour 594 coupled goat anti-rabbit antibodies (1:500, Invitrogen) followed by 

counterstaining with DAPI (Invitrogen), mounted using Vectashield, coverslipped, and 

visualized under Leica confocal microscope. For double labelling analysis the above protocol 

was followed except that the sections were first incubated in p-JNK (1:100) overnight at 40C 

followed by incubation for 1 hr with a cocktail of Alexaflour 594 coupled goat anti-rabbit 

antibody and FITC-tagged mouse monoclonal antibody raised against MAP2 (1:200).  

Flouro-Jade B staining: For colocalisation studies of p-JNK with Flouro-Jade B, deparaffinized 

sections were washed once with PBS for 5 min, microwaved in citrate buffer for 15 min, blocked 

with 5% goat serum and probed with p-JNK antibody for 1 hr, followed by three PBS washes. 

Sections were then incubated in secondary antibody, washed thrice with PBS and subjected to 

graded alcohol series. Sections were pretreated for 2 min with 0.06% potassium permanganate, 

rinsed in double distilled water for 3 min and immersed in Flouro-Jade B solution (0.0004% 

concentration) for 30 min at RT. After this step, sections were washed thrice with PBS for 5 min 

each, cleared with xylene and air dried on a slide warmer at 500C, mounted with DPX and 

coverslipped. Later, sections were analysed under confocal microscope. For Flouro-Jade B 

staining of the sections the same protocol was followed except that sections were not 

microwaved, primary antibody step is deleted and sections were immersed in potassium 

permanganate solution for 10 min. 
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Results			

  To investigate whether PbA infection leads to the activation of JNK pathway in the mice, we 

performed western blot analysis using antibodies against phosphorylated forms of MKK4, JNK, 

c-Jun and nonphosphorylated form of JNK, during the course of infection (Fig 1A). Distinct 

increases in immunoreactivity for p-MKK4 and p-c-Jun were seen at 3rd day PI. Densitometric 

analysis revealed that relative immunoreactivities of both p-MKK4 and p-c-Jun were significant 

on 7th day PI (Fig 1B, 1D). Although the levels of p-JNK at 3rd day PI were slightly higher than 

the control, a significant increase in expression was observed on 7th day PI (Fig 1C). Hence a 

strong and temporally regulated increase in MKK4/JNK/c-Jun pathway was produced in the 

murine brain upon PbA infection. Since the upregulation of p-JNK and p-c-Jun is not always 

adequate to prove the activity of JNK, we have performed a non radioactive capture JNK activity 

assay. As shown in the Fig 1E, JNK activity was dramatically increased on 3rd day PI and 

remained significantly elevated on 5th and 7th day PI; thus correlating with the results we 

obtained in our western blot analysis. In addition, immunohistochemistry was performed on 

brain sections (striatum) of PbA infected animals or uninfected controls, to confirm the induction 

of p-JNK that was so evident in our western blot analysis. In control mouse brain striatal sections 

(Fig 2A, C, D), p-JNK immunoreactivity was poorly distributed. However, in infected mouse 

brain sections (Fig 2B, E, F), signals for p-JNK increased in intensity and showed nuclear 

accumulation in some cells. Furthermore, double immunoflouroscent analysis of p-JNK with 

MAP2, a neuronal marker (Fig 2J-L); revealed neuronal induction of p-JNK in infected mouse 

brain sections, implying that neurons are the principal cell types in which p-JNK is activated in 

murine cerebral malaria. Since p-JNK is implicated in neuronal cell death in many 

neurodegenerative disorders (Colombo et al., 2009; Kuan et al., 2003; Pan et al., 2009) we next 

investigated the role of p-JNK on the viability of neurons using Flouro-Jade B a novel 

fluorescent stain that specifically binds to dying neurons (Schmued and Hopkins, 2000). To this 

end, we have first confirmed neuronal viability by staining the sections with Flouro-Jade B. As 

shown in the Fig 3A, control mouse brain sections stained very little for Flouro-Jade B, where as 

in infected mouse brain sections (Fig 3B) a robust increase in Flouro-Jade B staining cells was 

observed. This sort of staining pattern clearly indicates that neuronal cell death is wide spread in 

infected mouse brain sections as compared to controls. Moreover, colocalisation studies of p-
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mediator in this disease was proposed by Grau G et al, (Grau et al., 1987) and JNK play a critical 

role in mediating TNF-α induced apoptosis (Deng et al., 2003). Based on this information we 

sought to examine the role of JNK signal transduction pathway during ECM and further define 

the cell types that activate this pathway following proinflammatory assaults of TNF-α.  

   We observed that in infected brains, p-MKK4, p-JNK, and p-c-Jun were significantly 

upregulated compared to uninfected controls. Since terminally ill mice (7th day PI mice) showed 

the highest levels of these proteins compared to controls, we have chosen this time point for 

immunoflouroscent analysis. Consistent with this, immunostaining of control and terminally ill 

mouse brain straital sections with p-JNK, revealed robust increase of p-JNK positive cells only 

in infected brains. The nuclear localization of p-JNK hence can be envisioned as a consequence 

of its activation leading to its translocation into the nucleus.  

     Recently, it was shown that Plasmodium falciparum GPI stimulates macrophages to secrete 

TNF-α in a JNK2 dependent manner that could explain the higher survival rates of PbA infected 

JNK2 deficient mice but not JNK1 deficient mice, as compared to wild type controls (Lu et al., 

2006). In another study targeted deletion of Jnk3 protected the mice from neuronal injury after 

cerebral ischemia (Kuan et al., 2003). Moreover Brecht et al studied the specific roles of JNK 

isoforms in four different neurodegenerative processes and concluded that the protective effects 

of JNK 1 and destructive actions of JNK 3 depend on a pathophysiological context (Brecht et al., 

2005). These studies confirm the role of various JNK isoforms in diverse models of 

inflammation and pathology. However, a direct proof of evidence linking TNF-α activity to JNK 

activation is lacking in ECM model, even though the role of TNF-α in pathological manifestation 

of the disease is proven beyond doubt. Our studies not only provide a direct evidence for 

activation of JNK as evinced by increased expression of p-MKK4, p-JNK, and p-c-Jun, but most 

importantly prove that such pathways are activated in neuronal cell types. The extensive 

modulation of neuromotor functions seen during ECM may then be implicated to these 

observations where straital cell types seem to be vulnerable targets for TNF-α mediated effects. 

To further confirm the role of p-JNK in neuronal cell death, we have used Flouro-Jade B, to 

localize degenerating neurons. Double labeling experiments revealed that Flouro-Jade B positive 

cells are also immunoreactive for p-JNK, implying that p-JNK plays a crucial role in mediating 

neuronal cell death. Considering the primary role of JNKs as an activator of c-Jun, its 
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translocation into the nucleus may have several implications in immunomodulating the host 

responses during ECM. Although the role of JNK in neuronal apoptosis was proven beyond 

doubt, recent studies also confirm that JNKs are activated in microglia and control the release of 

cytokines (Hidding et al., 2002).  Hence there is a possibility that the JNK mediated release of 

proinflammatory cytokines from microglia could also be responsible for neuronal apoptosis. 

Mechanisms of JNK mediated neuronal apoptosis in our model is far from clear since it is not 

known at present whether it is due to the release of these microglial cytokines or the direct 

neuronal activation of JNK3 isoform itself. Also it will be interesting to unravel whether JNK 

mediated neuronal apoptosis follows caspase dependent or caspase independent pathways in PbA 

infected mice.  

  Apart from c-Jun phosphorylation, JNK also is shown to affect the activity of multiple proteins 

like ATF2, p53, Elk1, c-Myc and Bcl-2 family of proteins involved in apoptosis (Liu and Lin, 

2005), and thereby implicating its role in cell death. Numerous evidences reveal that constitutive 

activation of JNK by overexpressing the catalytically active form of MEKK1 promotes apoptosis 

(Minden et al., 1994), while the hippocampal neurons obtained from jnk3 null mice resist kainite 

induced apoptosis (Yang et al., 1997). Similarly, mice deficient in jnk1 and 2 showed reduced 

apoptosis in response to stressors such as UV irradiation, MMS and anisomycin, by preventing 

the release of cytochrome c (Liu and Lin, 2005). The pro-apoptotic function of JNK is possibly 

mediated by c-Jun which inhibits p53 mediated cell cycle arrest and therefore promotes 

apoptosis (Shaulian and Karin, 2002); as blocking c-Jun by specific antibodies or expression of a 

mutant and truncated form of c-Jun reduced apoptosis in response to NGF withdrawal (Ham et 

al., 1995). However, multiple proteins like BIM, a pro-apoptotic member of the Bcl-2 family and 

cytochrome c (Lei and Davis, 2003) could also influence the pro-apoptotic function of JNK. A 

more detailed understanding of the biochemical events underlying JNK activation in 

experimental cerebral malaria may prove useful, since selective JNK inhibitors can be developed 

and screened for neuroprotective efficiency thus mitigating the disease. 

 

 

 



 
 

CHAPTER	2
The	specific,	reversible	JNK	
inhibitor	SP600125,	
improves	survivality	and	
attenuates	neuronal	cell	
death	in	Experimental	
Cerebral	Malaria	(ECM)	
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SP600125,	a	small	molecule	inhibitor	of	JNK	

c-Jun N-terminal kinases (JNK) are serine/threonine protein kinases that phosphorylate serine 63 

and 73 at the N-terminal domain of c-Jun thus activating the transcriptional activity of AP-1 

(Davis, 2000; Karin et al., 1997).  JNK signalling is activated by various stress stimuli such as 

UV and ionizing radiation, heat shock, inflammatory cytokines, metabolic inhibitors, and 

osmotic or redox shock (Davis, 2000). There are three different isoforms of JNK with 10 

different splice variants. Of these JNK 1 and 2 are ubiquitously expressed and have a critical role 

in neural development, while JNK 3 is restricted to neural and cardiac tissues and is more closely 

involved in stress-induced neuronal apoptosis. JNK is activated by dual phosphorylation of Thr 

183 and Tyr 185 situated in the activation loop by the upstream JNKK1/MKK4/SEK1 and 

JNKK2/MKK7. Once activated JNK phosphorylates a variety of transcription factors like c-Jun, 

ATF2, Elk, p53 and c-Myc and also members of Bcl-2 family (Bim, Bcl-2, Bcl-xL and BAD) 

(Liu and Lin, 2005). Phosphorylated c-Jun forms homo or hetero dimers forming AP-1 

transcription factor which then regulates the expression of genes in response to a variety of 

stimuli such as cytokines, growth factors, stress, and bacterial and viral infections. In addition, 

phosphorylation of c-Jun and subsequent AP-1 mediated gene expression is a key event that 

mediates neuronal apoptotic processes since blockade of c-Jun activity by antisense 

oligonucleotides attenuated neuronal cell death in primary rat hippocampal cultures 

(Schlingensiepen et al., 1994).  

   “During the past decade, pharmaceutical research on these diseases has shifted focus from 

symptomatic benefit to developing novel disease modifying agents. A key driver of this focus is 

the enhancement in fundamental knowledge of the mechanisms governing neuronal survival and 

death. JNK plays an integral role in neuronal death and this pathway might be operative in 

various central nervous system (CNS) disease states” (Manning and Davis, 2003). The small 

molecule chemical inhibitor SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one), has been reported to 

be a potent and selective inhibitor of JNK1, -2, and -3 with more than > 20 fold selectivity over 

other related MAP kinases (Bennett et al., 2001). Administration of SP600125 has prevented 

neuronal apoptosis following ischemia or ischemia/reperfusion of the brain. Apart from its 

inhibition of JNK activity, SP600125 was also shown to inhibit a number of pro-apoptotic events 

such as the activation of pro-apoptotic Bcl2 family members, the release of mitochondrial 
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cytochrome c into the cell cytosol, or the activation of pro-apoptotic caspase family of proteases 

(Guan et al., 2006). SP600125 administered intraperitoneally 1 h before and 6 h in model of 

early brain injury after subarachnoid hemorrhage demonstrated benefits such as the suppression 

of caspase activation and concomitant neuronal injury, improved blood–brain barrier 

preservation, reduced brain swelling, and improved neurological function (Yatsushige et al., 

2007). SP600125 also prevented apoptosis of dopaminergic neurons in the 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's Disease (Wang et al., 2004) as well as 

neurons in the acute injury accompanying spinal cord trauma (Yin et al., 2005). Taken together, 

these results support the further development of JNK inhibitors as neuroprotective agents and 

their use in a variety of brain insults. We recently reported that JNK group of MAP kinases are 

activated and mediates neuronal cell death in ECM (Anand and Babu, 2011). Here we report for 

the first time that SP600125, a specific, reversible, ATP competitive inhibitor of JNK (Bennett et 

al., 2001), attenuates neuronal cell death and improves survivality in mice infected with PbA. 

Materials	and	Methods	

Study Groups: All the protocols followed for the use of animal experimentation were approved 

by the institutional as well as national ethical committee guidelines. Three study groups (n=15 

per group) of animals were used in order to evaluate the effect of SP600125 in ECM. In the first 

group, six to eight weeks old C57BL/6J mice of either sex (~20g body weight) were inoculated 

intraperitoneally with 106 parasitized red blood cells, suspended in 200µl of phosphate buffered 

saline (pH7.4).  The second group consists of uninfected mice of same age and sex and was used 

as negative controls. The animals infected with PbA strain showed behavioral changes around 

day 5 after inoculation followed by cerebral symptoms like paralysis, hemiplegia, convulsions 

and coma eventually succumbing to death by day 12. The third group consists of mice infected 

with PbA and were subsequently treated with SP600125 (Sigma) at 30mg/kg bodyweight 

dissolved in DMSO and given intraperitoneally starting from day 1 post infection (PI). This 

treatment regimen was followed for the next 9 days after which treated mice as well as control 

and PbA infected mice were sacrificed and brains were separated and stored either in -800 C or 

the mice were transcardially perfused with saline and later with 4% paraformaldehyde and the 

tissue was processed for histopathological studies. To evaluate the effect of SP600125 on the 

survivality of mice infected with PbA, a comparative survival curve of both infected and treated 
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groups was performed using MedCalc software, and the course of infection was followed daily 

by monitoring parasitemia on periodic blood smears prepared from day1 PI and was typically 

between 10-15% at the time of sacrifice.  

Western Blot analyses: Western blot analysis was performed as described earlier (Anand and 

Babu, 2011). Briefly, mouse brain tissues were homogenized in RIPA 

(radioimmunoprecipitaiton assay) buffer and lysates were sonicated and centrifuged at 14,000 g 

for 15 min at 40C. Cellular proteins were subjected to electrophoresis on 10% SDS-

polyacrylamide gels and resolved proteins were transferred onto nitrocellulose membranes. 

Then, membranes were blocked in non-fat dry milk (5%) in tris buffered saline (TBS) (10 mM 

Tris (pH 7.5), 150 mM NaCl) for 1 h at room temperature followed by incubation with primary 

antibodies for overnight at 40C. Then membranes were incubated with respective secondary 

antibodies conjugated to alkaline phosphatase (ALP) for 1-2 h at room temperature. Before and 

after incubation with secondary antibodies, membranes were washed with TBS and TBST (TBS 

containing 0.1% Tween-20). Blots were developed by incubating the membranes with BCIP-

NBT solution. The primary antibodies used for Western Blot analysis are rabbit polyclonal 

antibodies raised against cleaved caspase-3, p-c-Jun, β-Actin (Cell Signaling Technology), TNF-

α (Sigma-Aldrich) and mouse monoclonal antibodies raised against COX-2 (Cayman chemical). 

Immunohistochemistry: Immunohistochemical analysis was performed as described previously 

(Anand and Babu, 2011). Briefly, tissue sections were deparaffinized in xylene and passed 

through graded alcohols and further rehydrated in phosphate buffered saline (PBS). Antigen 

unmasking was carried out by micro waving the sections for 10–14 min in 10 mM citrate buffer 

(pH 6.0). Then, endogenous peroxide activity was inhibited by treating the sections with 3% 

H2O2 for 10 min followed by blocking with serum for 1 h at room temperature in a humid 

chamber. Sections were then incubated with primary antibodies against active-caspase-3 for 1 h 

at room temperature followed by incubation with peroxidase conjugated secondary antibody for 

1 h at room temperature. After washing in TBS, diaminobenzidine (DAB) in buffer was applied 

till sections develop colour. Then, sections were washed with distilled water followed by 

dehydration in graded alcohols, xylene and mounted with DPX (kit obtained from Biogenex Pvt 

Limited, India).  For NeuN immunostaining, the same protocol was followed except that 

inhibition of endogenous peroxidise activity step was skipped, the primary antibody used was 
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mouse anti-NeuN monoclonal antibody (Chemicon), the mouse secondary antibody used was 

tagged with AlexaFlour 594 (Invitrogen), sections were mounted with Vectashield (Vector Labs) 

and visualized under Leica confocal microscope. The deparaffinized sections were also stained 

for Haematoxylin and Eosin (H & E), cleared in xylene and mounted using DPX mounting 

medium and were visualized in light microscope to identify neurological lesions and 

degenerative cells. 

Flouro-Jade B staining: Paraffin embedded brain sections from all the three groups were 

deparaffinized in xylene, rehydrated in alcohol series and pretreated for 5-10min with 0.06% 

potassium permanganate, rinsed in double distilled water for 3min and immersed in Flouro-Jade 

B (Chemicon) solution (0.0004% concentration) for 30 min at RT. After this step, sections were 

washed thrice with PBS for 5min each, cleared with xylene and air dried on a slide warmer at 500 

C, mounted with DPX and coverslipped. Later, sections were analyzed under Leica confocal 

microscope. 

Results	

The effect of SP600125 on the survival of PbA-infected C57BL/6J mice was assessed in 

SP600125 treated and PbA infected animals. Results showed that all untreated PbA infected 

mice died by day 12 PI with a median survival of 8 days, while animals which received 

SP600125 have a median survival of 27 days and died by day 30 (Fig. 1 a). Thus the survival 

time of PbA infected mice treated with SP600125 was significantly prolonged in comparison to 

untreated group (p = 0.0001). We further sought to check whether administration of SP600125 in 

PbA infected mice has any effect on parasitemia. As shown in the Fig. 1 b, there is no significant 

difference in parasitemia between infected and treated groups.  H&E staining of brain sections 

from control mice showed healthy parenchyma, with intact blood vessels with no hemorrhages. 

However, sections taken from infected mice showed distinct neurological lesions, with 

parenchymal microhemorrhages, disruption of vessel walls and adherence of leucocytes to the 

vessel walls. In contrast, SP600125 treated mice have a healthy parenchyma, clear vessels with 

little or no hemorrhage (Fig. 1 c).  
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Souza and Riley, 2002). Further, the decision to use SP600125 at a dose of 30 mg/kg bodyweight 

per mouse was taken based on earlier reports that confirm the inhibitory effects of SP600125 in 

the brain after IP injection (Wang et al., 2004; Yatsushige et al., 2007). There is every possibility 

that changing the dosage/frequency/route of SP600125 administration may improve our findings 

and so certainly a follow-up study will be required to determine the optimum dosing schedule.  

    The major finding in this study is that SP600125 treatment increases the survivality in mice 

infected with PbA, although all treated mice invariably succumbed to death with high 

parasitemia and severe anemia. But the significant prolongation in survivality may open a 

considerable time window for adequate treatment in future. Further SP600125 treatment has no 

effect on parasite since the parasitemia levels in infected and treated mice are almost similar. 

One possible explanation for this observation is that the genome of Plasmodium lacks typical 

three-component (MEKK-MEK-MAPK) modules which are the hallmark of the ERK1/2, p38 

and JNK pathways (Ward et al., 2004). The other reason could be the specificity of SP600125, 

which has been shown to exhibit a selectivity of >20 fold relative to other closely related kinases 

(Bennett et al., 2001). 

    Apart from its inhibition of JNK activity and subsequent apoptotic cell death, SP600125 is 

also known to inhibit the expression of inflammatory genes and prevent the activation and 

differentiation of primary human CD4 cell cultures (Bennett et al., 2001). Hence the significant 

survivality that we observed in treated mice can be attributed to the immunomodulatory effects 

of SP600125 and this fact is confirmed by our immunoblot analysis where in we found marked 

reduction in the levels of proinflammatory mediators, TNF-α and COX-2 upon treatment with 

SP600125. These results are in consistence with the earlier in vitro reports where in SP600125 

effectively inhibited the expression of TNF-α and COX-2 (Bennett et al., 2001; Nakahara et al., 

2004; Nieminen et al., 2006). In fact, TNF-α and COX-2 have been implicated in the 

pathogenesis of cerebral malaria (Ball et al., 2004; Grau et al., 1987). Moreover, JNK up 

regulates both COX-2 and TNF-α under inflammatory conditions via c-Jun/AP-1 mediated 

transcription (Das et al., 2009; Hunot et al., 2004; Rhoades et al., 1992) and both COX-2 and 

TNF-α are implicated in neuronal cell death (Hunot et al., 2004; Venters et al., 2000).  

    Another related finding in our study is that SP600125 significantly inhibited the levels of 

active caspase-3 and p-c-Jun in infected mice. JNK interacts with both pro-apoptotic proteins, 
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such as c-Jun, p53, Bim and Bax enhancing cell death (Gillardon et al., 1999; Lei et al., 2002; 

Tsuruta et al., 2004) and phosphorylates anti-apoptotic proteins like Bcl-2 and Bcl-xL thereby 

inhibiting their anti-apoptotic function (Fan et al., 2000; Maundrell et al., 1997; Yamamoto et 

al., 1999). These interactions lead to the activation of caspase-3 in the brain through the intrinsic 

apoptotic pathway and this fact is supported by our findings (Fig. 2) wherein we observed 

inhibition of active caspase-3 in infected mice treated with SP600125. Phosphorylated c-Jun on 

the other hand increases the AP-1 transcription activity there by influencing the expression of 

key cell death promoting genes and controls neuronal cell death and survival in the mammalian 

brain (Herdegen et al., 1997). Earlier Ma et al., have found increased expression of c-fos protein 

with nuclear accumulation in the brains of terminally ill mice infected with PbA (Ma et al., 

1997). c-fos, like c-Jun belongs to Jun family and is an important constituent of AP-1 

transcription factor, and has been suggested to be a sign of neuronal degeneration and cell death 

in the brain (Smeyne et al., 1993). Further it is the concentration of phospho c-Jun and not c-Jun 

per se that is critical to the neuronal cell death (Rossler et al., 2002). We further confirmed 

neuronal cell death by staining the sections taken from all the three groups with Flouro-Jade B, a 

marker for neuronal degeneration and NeuN a pan neuronal marker. The staining pattern 

supports our hypothesis that SP600125 is neuroprotective and rescues the neurons from cell 

death that is widespread in cerebral malaria. Our findings are also in agreement in animal models 

of ischemic and related neurodegenerative disorders, wherein treatement with SP600125 

attenuated neuronal cell death (Gao et al., 2005; Wang et al., 2004). Thus, the SP600125 used in 

our study inhibits both transcription dependent cell death mediated by c-Jun, and transcription 

independent cell death mediated by caspase-3 possibly by interacting with mitochondrial cell 

death machinery. 

   The results presented here confirm that JNK is involved in neuronal cell death in murine 

cerebral malaria and also provide some new insights into the mechanism by which JNK triggers 

cell death execution pathways. In conclusion we hypothesize that SP600125 increases survivality 

in mice infected with PbA, reduces neurological lesions, attenuates neuronal cell death and has 

no effect on parasitemia. 
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ER	Stress	and	Neurodegeneration	in	experimental	cerebral	
malaria	

Cerebral malaria (CM) is the life-threatening complication of Plasmodium falciparum infection 

in humans, responsible for more than one million deaths annually (Miller et al., 1994). Cerebral 

dysfunction becomes evident through a variety of symptoms, including extreme lethargy and 

febrile convulsions and can progress to coma and death in approximately 20% cases (Idro et al., 

2005). Although a number of studies have described the neurological complications of human 

CM, the pathogenesis remains controversial. Apart from post mortem brain studies, an 

experimental murine model, induced by the infection of susceptible mice with Plasmodium 

berghei ANKA, has been used to further understand the pathogenesis of CM (de Souza and Riley, 

2002). Studies with this model have suggested that ECM complications are multifactoral 

involving activation of platelets, upregulation of proinflammatory cytokines and endothelial cell 

adhesion molecules, disruption of blood brain barrier, infiltration of leucocytes together with the 

mechanical blockage of microvessels by the monocytes and infected erythrocytes (van der Heyde 

et al., 2006). The pathologic features of fatal stage include PRBC and monocyte adhesion to 

cerebral vascular endothelial cells, edema, petechial heamorrhages, glial activation and neuronal 

cell death in the central nervous system (Lackner et al., 2007; Medana et al., 1997a; Pongponratn 

et al., 2003; Potter et al., 2006; Wiese et al., 2006). The mechanisms leading to cell death are 

complex and several pathways have been implicated, including mitochondrial dysfunction, 

calcium activated kinases, phosphatases and proteases, Caspases and c-Jun N-terminal Kinases 

(JNK) (Anand and Babu, 2011; Kumar and Babu, 2002; Kumar et al., 2003; Lackner et al., 

2007; Shukla et al., 2006). Though the events central to tumour necrosis factor (TNF) and 

interleukin are activated during FMCM (Medana et al., 2001), to our understanding no reports 

exists on the role of ER stress proteins during cell death in the brain.  

   The Endoplasmic reticulum (ER) is a cell organelle which plays a pivotal role in the synthesis, 

folding, posttranslational modifications and trafficking of secretory and membrane proteins, 

calcium storage and release, lipid biogenesis and apoptosis. Perturbations in ER functioning may 

lead to accumulation of misfolded proteins in the ER lumen and ER in turn initiates an adaptive 

response known as the unfolded protein response (UPR) that protects the cell against the 

accumulation of misfolded proteins (Kaufman, 1999). However, if the ER stress is excessive and 
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prolonged, these adaptive responses fail to compensate and UPR leads to cell death by both 

caspase-dependent and caspase-independent pathways (Kim et al., 2008; Rao et al., 2004). UPR 

is initiated by the binding of ER chaperone BiP/GRP78 to the misfolded proteins. Under normal 

physiological conditions, BiP forms a complex and suppress the activity of three proximal ER-

resident stress sensors: PKR-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and 

activating transcription factor 6 (ATF6) (Kim et al., 2008). During ER stress, BiP binds to 

misfolded proteins thereby releasing PERK, IRE1 and ATF6 from the complex. Upon its release 

from BiP, PERK is activated by homodimerization and autophosphorylation, and subsequently 

the kinase domain of PERK phosphorylates eIF2α (peIF2α) thereby shutting down global protein 

synthesis (Harding et al., 1999). However, phosphorylation of eIF2α can also lead to selective 

translation of activating transcription factor 4 (ATF4) which in turn activates the transcription of 

pro-survival genes such as GRP78 and GRP94; genes that are resistant to oxidative stress; and 

genes that are involved in amino-acid metabolism and transport (Harding et al., 2003; Lu et al., 

2004). IRE1 is activated by dimerization and trans-autophosphorylation upon its release from 

BiP (Bertolotti et al., 2000). Activated IRE1 splices XBP1 mRNA, resulting in a translational 

frameshift and formation of potent transcriptional activator, inducing the transcription of ER 

stress responsive genes (Kim et al., 2008). ATF6 is an ER resident protein which binds to BiP 

under normal physiological conditions. However during ER stress BiP binds to unfolded proteins 

releasing ATF6 which translocates to Golgi and is cleaved by site 1 and site 2 proteases to 

release transcription factors (Haze et al., 1999). The released transcription factors migrate to the 

nucleus and induces the transcription of ER chaperone proteins such as GRP78, GRP94, protein 

disulphide isomerase, and the transcription factors CHOP and X box-binding protein 1 (XBP1) 

(Kim et al., 2008; Szegezdi et al., 2006). Further the role of ER stress pathways in mediating 

neuronal cell death has been well documented in several neurodegenerative diseases like 

Alzheimer’s and Parkinson’s disease, Amyotrophic Lateral Sclerosis, Transmissible Spongiform 

Encephalopathies and ischemia (Lindholm et al., 2006). 

   The present study examines the role of ER stress proteins in modulating neuronal cell death in 

ECM, with particular emphasis laid on PERK-eIF2α axis. Our study for the first time shows that 

peIF2α mediates neuronal cell death in murine cerebral malaria. 
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Materials	and	Methods	

Induction of cerebral malaria in mice: All the protocols followed for the use of animal 

experimentation were approved by the institutional as well as national ethical committee 

guidelines. Six to eight weeks old C57BL/6J mice of either sex (~20g body weight, n=4 per each 

group) were inoculated intraperitoneally with 106 parasitized red blood cells, suspended in 200µl 

of phosphate buffered saline (pH7.4).  Uninfected mice of same age and sex were used as 

negative controls. The animals infected with Plasmodium berghei ANKA (PbA) strain showed 

behavioral changes around day 5 after inoculation followed by cerebral symptoms like paralysis, 

hemiplegia, convulsions and coma eventually leading to cell death. The parasitemia was 

monitored by preparing periodic blood smears from the day 1 of parasite inoculation and was 

typically between 15-20% at the time of sacrifice. The duration between parasite inoculation and 

sacrifice of terminally ill animals was approximately 6-12 days.  

Preparation of tissue lysates: Mouse brain tissues were homogenized in 5 volumes of RIPA 

(radioimmunoprecipitaiton assay) buffer containing 50 mM Tris–HCl (pH 8.0), 150 mM NaCl, 1 

mM EDTA, 0.4% deoxy-cholate, 1% NP-40 containing protease inhibitors including 2µg/ml 

leupeptin, 2µg/ml aprotinin, 1 mM phenylmethylsulfonylfluoride (PMSF) and phosphatase 

inhibitors including 10 mM β-glycerophosphate, 10 mM NaF, 0.3 mM Na3Vo4 and. The lysate 

was sonicated for 2 min and centrifuged at 14,000 g for 15 min at 40C. The supernatant was 

collected as whole tissue lysate and frozen at -800C before use. Protein concentrations were 

determined by the method of Bradford (BioRad). 

Western Immunoblotting: Western immunoblotting was performed according to the procedure 

published earlier (Anand and Babu, 2011). Briefly, 50µg of tissue lysates were separated by 

SDS-PAGE, and transferred onto nitrocellulose membrane and probed with primary antibodies 

for 1hr. Then membranes were incubated with secondary antibodies conjugated to alkaline 

phosphatase (ALP) (anti-rabbit and anti-mouse IgG conjugated to ALP obtained from Genei Pvt 

Ltd, Bangalore, India), and immunoreactivity was visualized by incubating the membranes with 

BCIP-NBT solution (Genei Pvt Ltd, Bangalore, India). Immunoreactivity was analyzed 

quantitatively using ImageJ software (NIH). The primary antibodies used in these experiments 

included rabbit polyclonal antibodies raised against phosphor-PERK (p-PERK), eIF2-α, 

GADD34, BiP, Calregulin, Calnexin (Santa Cruz Biotechnology); phospho-IRE1(p-IRE1), 
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ATF4 (Abcam); phospho-eIF2-α (Epitomics), Caspase-3, BCL-2, BAX, cleaved caspase-7, 

caspase-12 (Cell Signaling Technology); CHOP/GADD153 (Pierce) and mouse monoclonal 

antibodies raised against ATF-6 (Abcam). 

Histopathology:  Formalin fixed, paraffin embedded mouse brain sections were deparaffinized in 

xylene, rehydrated in alcohol series and incubated in 0.1% Cresyl violet solution for 3–5 min. 

The sections were then rinsed in distilled water and differentiated in 95% alcohol, followed by 

dehydration in 100% alcohol. The sections were then cleared in xylene and mounted using DPX 

mounting medium. Tissue sections were also stained with hematoxylin and eosin (H&E) for 

histological analysis following the above protocol. 

Immunohistochemistry: For immunohistochemistry infected and control mice brains were 

perfused first with 0.9% saline solution followed by 4% paraformaldehyde in 0.1M PBS, pH 7.4 

and were embedded in paraffin. Paraffin embedded mice brains were sectioned horizontally 

(5µm) by automated rotary microtome (Leica), deparaffinized in xylene, passed through graded 

alcohols and further rehydrated in phosphate buffered saline (PBS). Antigen retrieval was carried 

out by microwaving sections in 10mM citrate buffer, pH 6.0, for 10 min. Sections were then 

treated with 3% H2O2 for 10 min to inhibit endogenous peroxidase followed by incubation with 

serum for 1 h at room temperature (RT) in a humid chamber. Primary antibody (1:100 dilution of 

rabbit polyclonal antibodies against p-eIF2α and CHOP) was diluted in blocking solution and 

incubated overnight at 40C. Peroxidase conjugated secondary antibody was used for 1hr at RT 

followed by TBS washes (3x5 min each). DAB in buffer was used till sections developed color. 

Sections were then, counter stained with haematoxylin for 10s and washed with dH2O followed 

by dehydration in graded ethanol and xylene and coverslipped with DPX mount.  

Double Immunofluorescence analysis: For double immunoflouroscent analysis, the same 

procedure was followed except that the sections were not pre-treated with 1% hydrogen 

peroxide. Double immunofluorescence analysis was performed by incubating sections in a 

cocktail of primary antibodies (rabbit polyclonal p-eIF2α 1:100 dilution with mouse monoclonal 

Synaptophysin (Abcam) 1:100 dilution) and (rabbit polyclonal CHOP (1:100) dilution with 

mouse monoclonal Synaptophysin (Abcam) 1:100 dilution) overnight at 40C. The sections were 

washed in PBS and then incubated in fluorochrome-conjugated secondary antibodies 1:100 for 1 

hour at room temperature and further incubated with DAPI and mounted using Vectashield 

(Vector Labs). The sections were visualized using a Leica confocal microscope. 
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Flouro-Jade B staining: For Flouro-Jade B staining, deparaffinized sections were subjected to 

100% Ethanol for 10 min followed by Basic alcohol (1% sodium hydroxide in 80% alcohol) for 

5 min. This was followed by immersing the sections in 70% alcohol for 2 min and double 

distilled water for 2 min. Sections were then immersed in potassium permanganate solution for 

10 min, washed once with PBS for 2 min, and immersed in Flouro-Jade B solution (0.0004% 

concentration) for 30 min at room temperature. After staining, the sections were washed three 

times with double distilled water, cleared with xylene, air dried and coverslipped using DPX 

(Fluka). For colocalisation studies of CHOP with Flouro-Jade B, deparaffinized sections were 

washed once with PBS for 5 min, microwaved in citrate buffer for 15 min, blocked with 5% goat 

serum and probed with CHOP antibody for 1 hr, followed by three PBS washes. Sections were 

then incubated in secondary antibody, washed thrice with PBS and subjected to graded alcohol 

series. Sections were pretreated for 2 min with 0.06% potassium permanganate, rinsed in double 

distilled water for 3 min and immersed in Flouro-Jade B solution (0.0004% concentration) for 30 

min at RT. After this step, sections were washed thrice with PBS for 5 min each, cleared with 

xylene and air dried on a slide warmer at 500C, mounted with DPX and coverslipped. Later, 

sections were analysed under confocal microscope. 

Data Analysis: Data are reported as means +/- SEM of n experiments. All parameters were 

compared using a two-tailed Student’s-t-test between infected and control animals.  A level of *p 

< 0.05 was considered statistically significant and was determined using Sigma plot 2000 for 

windows version 6.00, SPSS Inc., Illinois, USA.  

Results	

As shown in Fig 1 a, all the infected mice succumbed to the disease and died by day 12 PI with a 

median survival of 7.5 days (p < 0.0001) often with parasitemia not exceeding 15% (data not 

shown), whereas all the uninfected control mice have 100% survivality. H&E staining of brain 

sections taken from PbA infected animals (Fig 1 c, e and g) showed distinct neurological lesions, 

with parenchymal microhemorrhages, cells with irreversible damage, shrinkage of the nucleus, 

vacuolization of the cytoplasm with distinct apoptotic morphology, disruption of vessel walls 

and adherence of leucocytes to the vessel walls. In contrast, brain sections taken from uninfected 

controls (Fig 1 b, d and f) have a healthy parenchyma, clear vessels with no hemorrhage. 
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Fig 8: Paraffin embedded sections of both control (a, e and i) and PbA infected mouse brain sections (c, g and k) 
were stained for Flouro-Jade B. While control sections stained very little for Flouro-Jade B, infected sections have 
significantly higher number of Flouro-Jade B positive cells in all the three regions. Panels (b, f and j) and (d, h and l) 
were phase-contrast images of control (a, e and i) and infected (c, g and k) panels respectively. Double label staining 
of CHOP (m) and Flouro-Jade B (n) showed that CHOP positive cells were also positive for Flouro-Jade B (o). 
Photomicrographs shown here in this figure are a representative of three individual animals from each group. 

Discussion	

Murine CM model has provided important insights into the pathogenesis of CM and enabled 

potential targets for modulation to be identified for study in humans. C57BL/6J mice infected 

with PbA develop neurological signs and symptoms typical of human CM and die within 6-12 

days PI (de Souza and Riley, 2002). Studies with this model have identified the upregulation of 

several pro-apoptotic mediators as major cause of neuronal cell death during the course of 

infection (Anand and Babu, 2011; Kumar and Babu, 2002; Kumar et al., 2003; Lackner et al., 

2007; Shukla et al., 2006; Wiese et al., 2006). An overwhelming evidence points out the 

activation of inflammatory pathways, upregulation of cytokines such as TNF-α, IFN-γ, IL-1, IL-

6 and IL-8 and pRBC sequestration during the pathophysiology of CM (van der Heyde et al., 

2006). Further, sequestration results in reduced blood flow leading to tissue hypoxia and 

hypoglycemia (Marsh et al., 1995), which in turn causes protein misfolding and ER stress. 

Although there is growing evidence underlying the role of the UPR and ER stress in several 

neurodegenerative disorders (Lindholm et al., 2006), there is no data currently available as to 

which of the three possible branches of UPR are activated, or the kinetics of activation or to the 

extent of their involvement in neuronal cell death in ECM.  

To this end, we performed Western blot analyses and our results for the first time showed the 

induction of p-PERK and p-IRE1 and cleavage of ATF6 in infected mice brains but not in 

uninfected controls indicating the activation all the three branches of UPR. Our results are in 

agreement with earlier studies of brain ischemia/reperfusion and other neurodegenerative 

disorders which implicate the activation of multiple pathways of UPR following insult 

(Lindholm et al., 2006). However we emphasized the role of PERK-eIF2α axis in this study 

mainly because our aim here was to investigate a well-established pathway of translation arrest 

and to provide deeper insight into the mechanisms by which PERK-eIF2α axis mediates neuronal 

cell death in ECM.  
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Along with hypoglycemia which is known to occur in cerebral malaria (Marsh et al., 1995), 

depletion of ER calcium stores is known to activate PERK (Brostrom and Brostrom, 1990; 

Prostko et al., 1992). Further, a direct proof of evidence linking disturbances in neuronal calcium 

homeostasis to PERK activation is lacking in ECM model. However, supporting evidence in the 

form of calpain activation owing to altered calcium homeostasis in pathological manifestation of 

the disease is well established (Shukla et al., 2006). Activation of PERK leads to eIF2α 

phosphorylation, thereby shutting off mRNA translation and reducing the protein load on the ER. 

In this study, we evaluated PbA -induced alterations in both eIF2α phosphorylation and eIF2α 

protein levels by western blotting using the respective antibodies. While there is no change in the 

levels of eIF2α protein, p-eIF2α levels increased significantly in infected mice as compared to 

controls. Further we performed Immunohistochemistry to determine whether there was any 

regional difference in the expression of p-eIF2α. We selected cortex, hippocampus and striatum, 

the three different neuroanatomical regions that control movement because, CM effects 

movement and coordination in terminally ill mice with symptoms ranging from but not limited to 

stupor, hemiplegia, dysplegia, paraplegia coma and finally death. Robust increases in 

immunoreactivity for p-eIF2α was observed in cortex, hippocampus and striatum indicating that 

all the three regions are equally vulnerable to ER stress and infact this regional vulnerability 

coincides with neuronal cell death as observed in our Cresyl violet and Flouro-Jade B  staining. 

We further performed p-eIF2α/synaptophysin colocalisation experiments in infected mice brain 

sections to confirm the neuronal induction of p-eIF2α. Our results show that p-eIF2α was 

significantly upregulated in neurons and taking into account the pattern of Flouro-Jade B staining 

we conclude that neurons are particularly vulnerable to ER stress mediated cell death. 

 eIF2α phosphorylation was followed by the induction of the transcription factor ATF4 and 

GADD34, both genes being specific targets of the PERK/eIF2α pathway. GADD34 is a 

regulatory subunit of protein phosphatase 1(PP1), which is required for eIF2α dephosphorylation 

and recovery from a shutoff of total protein synthesis in response to ER stress (Novoa et al., 

2001). In our results we found distinct increases in both ATF4 and GADD34 emphasizing the 

point that PERK/eIF2α pathway is activated in ECM. Increased levels of p-eIF2α and GADD34 

observed in infected mice throws light on the dynamic stress response involving regulation of 

eIF2α kinases and phosphatases. Increased GADD34 levels in infected animals also support the 
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notion that the increase in the levels of p-eIF2α is due to elevated activity of the upstream kinase 

and not due to decreased activity of phosphatase.  

While ATF4 on one hand induces the transcription of pro-survival genes such as GRP78, GRP94 

and genes that are involved in amino-acid metabolism and transport, on the other hand it also 

leads to the transcription of CHOP/GADD153 which is a pro-apoptotic ER stress marker. Infact, 

PERK-eIF2α signaling pathway directly regulates the transcriptional arm of the UPR, affecting 

both the pro- and anti-apoptotic components (Luo et al., 2003). In this connection we performed 

Western Blot analyses of BiP and CHOP and our results show a decrease in BiP levels and a 

corresponding increase in CHOP levels suggesting that the pro-apoptotic component of PERK-

eIF2α signaling pathway is dominant over its anti-apoptotic counterpart in the PbA infected 

mice. This fact is further strengthened by our results wherein we also found the downregulation 

of Calreticulin and Calnexin, the two ER resident pro-survival chaperones (Liu et al., 1997; 

Rosenbaum et al., 2006) in infected mice as compared to controls. Our results are in agreement 

with earlier studies where in, BiP expression was reduced while CHOP expression was increased 

in the late phase of permanent middle cerebral artery occlusion (MCAO) in mice (Morimoto et 

al., 2007). Thus, in light of these observations we conclude that in ECM, ER stress accompanied 

by failure of adaptive response, may eventually results in apoptotic cell death.  

CHOP is a transcription factor that translocates to nucleus after its activation. Infact all the three 

axes of ER stress pathway converge on CHOP induction (Oyadomari and Mori, 2004) and it is 

one of highest inducible genes during ER stress as revealed by microarray analysis (Okada et al., 

2002). Numerous evidences reveal that overexpression of CHOP or microinjection of CHOP in 

cells promotes apoptosis (Matsumoto et al., 1996; Maytin et al., 2001; Oyadomari et al., 2001), 

while overexpression of BiP attenuates CHOP induced apoptosis (Wang et al., 1996). Similarly, 

mice deficient in CHOP showed reduced apoptosis in response to ER stress (Oyadomari et al., 

2001; Zinszner et al., 1998). Our results from CHOP immunohistochemistry show that CHOP 

immunoreactivity is robust in all the three brain regions of the infected mouse brain as compared 

to controls. Further CHOP is localized exclusively to nucleus and CHOP/synaptophysin 

colocalisation experiments revealed that CHOP is expressed in neurons in infected mice. 

Moreover, CHOP/Flouro-Jade B dual staining confirm that CHOP is involved in neuronal cell 
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death in PbA infected mice. Taken together, our results highlight the importance of CHOP 

mediated neuronal cell death in ECM.  

Apart from its intrinsic ribonuclease activity, IRE1, also has a Ser/Thr kinase domain which once 

activated is involved in ER stress mediated cell death (Kim et al., 2008). In fact modulation of 

UPR signaling via IRE1α is also dependent on its association with pro-apoptotic members of 

BCL-2 family BCl-2-associated X protein (BAX) and BCl-2 antagonist/killer (BAK) (Hetz et al., 

2006). Our results, in conjunction with this previous study, show the activation of IRE1, 

upregulation of BAX, down regulation of BCL-2 and cleavage of caspase-3 indicating ER stress 

mediated apoptotic pathway in PbA infected mice brains. Activated IRE1α also mediates 

apoptosis via its interaction with the cytoplasmic domain of TRAF2 and activation of JNK via 

IRE1α–TRAF2-ASK1–JNK signaling pathway (Kim et al., 2008; Urano et al., 2000). In fact Liu 

et al  recently demonstrated IRE1α- ASK1–JNK mediated pro-apoptotic pathway in the 

hippocampus of patients with chronic epilepsy (Liu et al., 2011). Earlier, we have demonstrated 

the activation and involvement of JNK in mediating neuronal cell death in ECM model (Anand 

and Babu, 2011). Taken together these data implicate a role of IRE1α in neuronal apoptosis in 

PbA infected mice.  

Unlike activated IRE1 which plays a major role in apoptosis in ER stressed cells, activation of 

ATF6 is prosurvival aimed to counteract ER stress (Szegezdi et al., 2006). Moreover, in a recent 

study it was reported that ischemia activates ATF6 and induces ER stress responsive genes 

(Doroudgar et al., 2009). Furthermore, sequestration of PRBC’s, attachment of monocytes to 

cerebral endothelia, cerebral oedema and increase in brain lactate result in ischemic conditions 

(Sanni et al., 2001) which may provide a plausible explanation for the activation of ATF6 in PbA 

infected murine brain.  

Caspase-12 is present on the cytoplasmic side of the ER and mediates cell death associated with 

ER stress. Caspase 12 is activated either by calpain owing to Ca2+ imbalances (Nakagawa and 

Yuan, 2000) or it is activated by classical TRAF2-IRE1-JNK pathway (Yoneda et al., 2001) or it 

is activated by caspase-7 (Rao et al., 2001). Our results show the activation of caspase-12 in 

infected animals, but at this point of time we cannot exactly delineate as to which of these 

pathways are involved in caspase-12 activation. Infact, we have reported earlier the activation of 
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calpains and JNK (Anand and Babu, 2011; Shukla et al., 2006) in murine malaria. Further we 

have also checked the levels of active caspase-7 in this study which suggests that activation of 

caspase-12 in ECM could be synergistic involving calpains, TRAF2-IRE1-JNK and also 

caspase-7.  

In summary the results presented here show for the first time, activation of multiple apoptotic ER 

stress pathways which could shed new light on the mechanisms underlying the relationship 

between ER stress, the UPR and the cell death program in ECM.  
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Pentoxifylline	(PTX)	is	neuroprotective	in	experimental	
cerebral	malaria	

Pentoxifylline (PTX), 3,7-Dihydro-3,7-dimethyl-l-(5-oxohexyl)-lH-purine-2,6-dione, is the 1-(5-

oxohexyl) analog of the methylxanthine theobromine with a molecular weight of 278.31. To 

begin with, PTX was characterized as a hemorrheologic agent for the treatment of peripheral 

vascular disease (Muller and Lehrach, 1981) and intermittent claudication (Porter et al., 1982). 

This therapeutic benefit is mainly due to its effect on red blood cell deformability and therefore 

leading to increased red blood cell flexibility and reduced blood viscosity (Aviado and 

Dettelbach, 1984; Grigoleit and Jacobi, 1977). This leads to reduced red blood cell aggregation, 

reduced platelet aggregation, and fibrinogen levels resulting in improved microcirculation and 

tissue oxygenation (Jarret et al., 1977; Leonhardt and Grigoleit, 1977; Weithmann, 1983). 

Further, PTX alters the biochemical and physical properties of platelets (Hammerschmidt et al., 

1988), endothelial cells (Weithmann, 1980), polymorphonuclear leukocytes and macrophages 

(Hammerschmidt et al., 1988; Ikossi et al., 1986), and fibroblasts (Berman and Duncan, 1989). 

Additionally, PTX also known to be immunomodulatory and it exerts strong anti-cytokine 

activity, as it predominantly inhibits the proinflammatory actions of interleukin-1 (IL-1) and 

tumor necrosis factor-α (TNF-α) on neutrophil function and cytokine production by monocytic 

cells (Balazs and Kiss, 1994; Strieter et al., 1988; Sullivan et al., 1988; Tannenbaum and 

Hamilton, 1989).  

PTX is known to inhibit phosphodiesterases, thereby increasing cytoplasmic cyclic adenosine 

monophosphate (cAMP) levels (Sinha et al., 1995). High levels of cAMP suppress TNF-α gene 

transcription (Strieter et al., 1988). In addition to inhibiting cytokines, PTX is also known to 

reduce the TNF-α induced upregulation of ICAM and E-selectin in endothelial cells which 

inhibits the adhesion of neutrophils (Bahra et al., 2001; Zhang et al., 2010). It also inhibits 

adhesiveness, degranulation, and superoxide production of activated neutrophils and the 

production of nitric oxide by macrophages (Bessler et al., 1986).  

Because of its ability to counteract multiple proinflammatory mediators simultaneously PTX 

seems a useful agent to attenuate the generalized inflammatory response leading to the organ 

failure observed in Experimental cerebral malaria. To test this hypothesis, we wanted to check 
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whether administration of PTX improves survivality and attenuates neuronal cell death in mice 

infected with PbA.  

Materials	and	methods	

Experimental CM model: Pathogen-free C57BL/6J mice 6-8 weeks old, weighing 18–24 g, were 

obtained from NCLAS (National Center for Laboratory Animal Sciences), Hyderabad. All the 

protocols followed for the use of animal experimentation were strictly in accordance with the 

institutional and national ethical committee guidelines. C57BL/6J mice of either sex were 

inoculated intraperitoneally with 106 parasitized red blood cells, suspended in 200μl of PBS (pH 

7.4). Uninfected mice of same age and sex were used as controls. Parasitemia was assessed from 

Geimsa-stained thin smears of tail blood prepared every day post inoculation (PI). On day 6-9 PI 

mice displayed clinical signs typical of CM such as ataxia, hemiplagia, seizures, paralysis and 

coma followed by death, with parasitemia not exceeding 15%. Brains were dissected out from 

control, PbA infected animals and Pentoxifylline treated animals, snap frozen in liquid nitrogen 

and stored in -800C until further use. To evaluate the effect of Pentoxifylline on the survivality of 

mice infected with PbA, a comparative survival curve of both infected and treated groups was 

performed using MedCalc software, and the course of infection was followed daily by 

monitoring parasitemia on periodic blood smears prepared from day1 PI and was typically 

between 10-15% at the time of sacrifice.  

Administration of Pentoxifylline: Mice were grouped into 3 categories namely control mice, 

infected mice, infected mice receiving PTX daily  at a dose of 60mg/kg BW/twice a day with a 

gap of 12 hr intervals. And this dosage regimen continued for the next 10 days starting from day 

0 PI. After which, blood was collected and brains were harvested for further analyses.   

Histology: For histological analysis, brains were quickly removed, fixed in 10% formalin, 

embedded in paraffin and cut into 5µm sections. The sections were stained with hematoxylin and 

eosin (H&E). Slides were examined under a light microscope for neurological lesions, 

infiltration of leucocytes, sequestration of monocytes and PRBC’s and neuronal cell death. 
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Behavioral analyses: Clinical signs of cerebral malaria were evaluated and used for scoring 

disease severity as shown in the following table (Waknine-Grinberg et al., 2010). Mice with a 

cumulative score of 5 or above are sacrificed, and death deemed to be on the following day. 

Parameter   Clinical signs  Severity 
(score)  

Appearance  Normal 
Coat ruffled 
Coat staring; panting  

0 
1 
2  

Behaviour  
(undisturbed)  

Normal  
Hunched; wobbly gait  
Partial paralysis; immobile*  
Convulsions; coma*  

0 
1 
2 
3  

Food intake  Normal 0 
Up to 10% loss in body weight 
10%-15% loss in body weight * 
More than 15% loss in body weight*  

0 
1 
2 
3 

Body    
temperature 

Normal (36-37°C)  
34-35°C  
32-33°C*  
Below 32°C*  

0 
1 
2 
3  

         

Assessment of BBB- vascular leakage by Evans Blue dye extravasation method: The evaluation 

of vascular permeability was performed after 9 days in all the three experimental groups (control, 

infected and pentoxifylline treated). One hour before the sacrifice of mice, Evans blue dye (2 

ml/kg of 2% dye in 0.9% NaCl) was injected intravenously. Immediately after sacrificing the 

animals by an overdose of pentobarbital, the blood was cleared from the circulation by 

transcardiac perfusion (150 ml 0.9% NaCl). The brains were rapidly removed and dissected and 

analyzed for dye leakage into the brain parenchyma.  

Western Blot Analysis: Western blotting was performed using the standard method (Anand and 

Babu, 2011). The following primary antibodies were used: mouse monoclonal antibodies raised 

against COX2 (Cayman chemical) and TNF-α (Sigma), rabbit polyclonal antibodies raised 

against iNOS (Chemicon), p-JNK, p-p38, p-ERK, JNK, p-AKT, AKT, active caspase 3, PARP, 

Bcl-2, Bax and cytochrome-c (Cell Signalling Technology). 

Immunohistochemistry and analysis of infiltrating lymphocytes: Immunohistochemical analysis 

was performed as described previously (Anand and Babu, 2011). Briefly, tissue sections were 
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deparaffinized in xylene and passed through graded alcohols and further rehydrated in phosphate 

buffered saline (PBS). Antigen unmasking was carried out by micro waving the sections for 10–

14 min in 10 mM citrate buffer (pH 6.0). Then, endogenous peroxide activity was inhibited by 

treating the sections with 3% H2O2 for 10 min followed by blocking with serum for 1 h at room 

temperature in a humid chamber. Sections were then incubated with primary antibodies against 

TNF-α (1:100 dilution), active-caspase-3 (CST, 1:100 dilution), COX-2 (1:100) and iNOS 

(1:100) for 1 h at room temperature followed by incubation with peroxidase conjugated 

secondary antibody for 1 h at room temperature. After washing in TBS, diaminobenzidine 

(DAB) in buffer was applied till sections develop colour. Then, sections were washed with 

distilled water followed by dehydration in graded alcohols, xylene and mounted with DPX (kit 

obtained from Biogenex Pvt Limited, India).  For NeuN immunostaining, the same protocol was 

followed except that inhibition of endogenous peroxidise activity step was skipped, the primary 

antibody used was mouse anti-NeuN monoclonal antibody (Chemicon), the mouse secondary 

antibody used was tagged with AlexaFlour 594 (Invitrogen), sections were mounted with 

Vectashield (Vector Labs) and visualized under Leica confocal microscope. For cd4 and cd8 

lymphocyte infiltration into the brain parenchyma we stained the sections with FITC tagged 

mouse anti-cd4 and TRITC tagged mouse anti-cd8 antibodies (eBioscience) following the same 

protocol as described above. 

Flouro-Jade B staining:   Paraffin embedded brain sections from all the three groups were 

deparaffinized in xylene, rehydrated in alcohol series and pretreated for 5-10min with 0.06% 

potassium permanganate, rinsed in double distilled water for 3min and immersed in Flouro-Jade 

B (Chemicon) solution (0.0004% concentration) for 30 min at RT. After this step, sections were 

washed thrice with PBS for 5min each, cleared with xylene and air dried on a slide warmer at 500 

C, mounted with DPX and coverslipped. Later, sections were analyzed under Leica confocal 

microscope. For colocalisation studies of active caspase-3 with Flouro-Jade B, deparaffinized 

sections were washed once with PBS for 5 min, microwaved in citrate buffer for 15 min, blocked 

with 5% goat serum and probed with caspase-3 antibody for 1 hr, followed by three PBS washes. 

Sections were then incubated in secondary antibody, washed thrice with PBS and subjected to 

graded alcohol series. Sections were pretreated for 2 min with 0.06% potassium permanganate, 

rinsed in double distilled water for 3 min and immersed in Flouro-Jade B solution (0.0004% 

concentration) for 30 min at RT. After this step, sections were washed thrice with PBS for 5 min 
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each, cleared with xylene and air dried on a slide warmer at 500C, mounted with DPX and 

coverslipped. Later, sections were analysed under confocal microscope. 

Caspase 3 activity assays: Briefly, brain tissues were homogenized in caspase assay buffer 

containing 50 mM HEPES (pH 7.5), 100 mM NaCl, 2 mM EDTA, 0.1% CHAPS, 10% sucrose 

and 5 mM DTT. Aliquots of 50μg of crude tissue lysate were incubated with caspase-3 substrate 

Ac-DEVD-AFC (Pharmingen, San Diego, CA) at 37°C for 30 min. AFC hydrolysis was 

monitored by measuring flouroscence (excitation, 400nm emission, 500nm) in a Flouromax-3, 

Jobin Yvon Horiba spectrofluorometer. 

Cytokine Assays: The RayBio Mouse Inflammation Array was purchased from RayBiotech 

(Norcross, GA) and used according to the manufacturer's instructions. Briefly, after blocking, 

membranes were incubated for 2 h with 250μg of brain tissue lysate taken from control, infected 

and PTX treated groups. The membranes were washed and then incubated with biotin-

conjugated antibodies for 1 h. The membranes were washed again and incubated with 

horseradish peroxidase-conjugated streptavidin for 30 min, washed, and then developed. 

Densitometric analysis of each spot was done using ImageJ software (NIH). 

Quantitative SYBR Green real-time PCR: Intron/exon spanning, gene-specific PCR primers 

specific for mouse ICAM-1, VCAM-1, MSP-1 and GAPDH as a housekeeping gene control 

(Table 1) were designed for real-time PCR using Primer Express 1.0 software (Applied 

Biosystems).  PCR standards for determining copy numbers of target transcripts were cloned into 

the pT257R/T vector (Promega). Linearized plasmids were quantitated by nanodrop method, and 

from 108copies, tenfold serial dilutions were performed for each plasmid. These dilutions 

resulted in generating a dynamic range from 108  to 10 copies/μl and served as standards for real 

time PCR. RNA from the brains of individual animals was used for real-time PCR assays. cDNA 

was synthesized using Taqman reverse transcription reagents (Applied Biosystems). Each 20µl 

amplification reaction mixture and Thermal cycling conditions were given in the table below 

(Table 2 & 3). A GAPDH fragment was amplified in triplicate reactions by real-time PCR on the 

same plate as the gene of interest. The mean concentration of GAPDH in each sample was used 

to control for integrity of input RNA and to normalize values of target gene expression to those 

of the housekeeping gene expression. The final results were expressed as the mean number of 

copies per 200 ng total RNA for ICAM, or VCAM relative to values obtained for GAPDH RNA. 
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The same strategy was employed to analyze the expression levels of MSP-1 in control, infected 

and PTX treated samples.  

Table 1 (Primers used in this study) 

PRIMERS FORWARD REVERSE 

ICAM1 GCAAGTAGGCAAGGACCTCA CAGCACCGTGAATGTGATCTC 

VCAM1 TGGAGGAAATGGGCATAAAG CTCTGCCTCTGT TTGGGTTCA 

MSP1 GGATTAATGCACGCAATAAAT ATTTTCTATTGGTTTTCTATAACC 

GAPDH CCTCAACTACAT CCTTTACT GCTCCTGGAAGATGGTGATG 

 

Table 2 (PCR composition-20μl) 

10X PCR buffer 2µl 

MgCl2 2µl 

2.5mM dNTPs 2µl 

Forward primer 0.2µl 

Reverse primer 0.2µl 

Genomic DNA 20ng 

Taq polymerase 0.2µl 

Water 11.4µl 

 

Table 3 (Thermal cycling conditions) 

94°C 2 min 

94°C 30 sec 

56°C 30 sec 

72°C 1 min 

74°C 10 min 

 

Statistical analysis: The significance of observed differences among all the three groups was 

assessed by paired t test for cytokine assays or analysis of variance (ANOVA) for real-time PCR, 

Western immunoblot analysis, behavioral tests and caspase-3 activity assays. Analysis was 

30 cycles  
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carried out using Sigma Plot 11.0 software. Values were considered to be significant when P 

values were <0.05. 

Results	

Treatment with PTX protects against severe P. berghei malaria: To determine whether treatment 

with PTX protects against severe P. berghei malaria, we infected two groups of mice with P. 

berghei and compared the survival of mice inoculated intraperitoneally on day 1 of infection 

with PTX to the survival of infected controls (Fig 1). The mice that received PTX at a dose of 

60mg/kg body weight twice a day (n=15) exhibited significantly (P< 0.0001) increased survival 

after P. berghei infection compared with the survival infected controls (n=15). Infact the 

infected mice which received PTX at 60mg/kg body weight twice a day, have shown 70% 

survivality compared to infected controls which died by day 12 post infection (PI). To evaluate 

whether the protective effects of Pentoxifylline was dose dependent, we treated animals with half 

the fully protective Pentoxifylline dose (60 mg/kg i.p. once a day). This dose only delayed the 

disease onset and progression but did not offer complete protection as observed in mice treated 

with a dose of 80 mg/kg dose i.p. twice a day. To further evaluate the protective effect of PTX, 

we have administered the drug at a dose of 60mg/kg BW once a day starting from sixth day post-

infection (after onset of cerebral symptoms). Even at this time point PTX was found to be 

protective since the median survivality of mice increased to 27.8 days. Further, we have taken up 

a scoring chart for the definition and severity of CM as per the clinical signs. According to this 

scoring chart we have tested 4 parameters with corresponding clinical sigs. Each clinical sign 

was given a severity score, ranging from normal = 0 to abnormal = 3. In our results infected mice 

received a better score indicating cerebral complications, whereas PTX treated mice have a low 

scoring pattern indicating normal (p<0.01). 
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Discussion	

The detailed pathophysiology of cerebral malaria remains far from completely resolved and 

contributes to high mortality rate especially among children. The pathological hall marks of CM 

include cerebral capillaries packed with parasitized erythrocytes, hemorrhages, global hypoxia-

ischemia, increase in brain lactate levels and glial activation and proliferation. In addition, focal 

accumulation of proinflammatory cytokines in areas of brain with massive sequestration could be 

a major cause of neuronal cell death in cerebral malaria. In fact a central role for TNF-α in the 

pathological manifestation of the disease has been proposed. Moreover, extensive endothelial 

cell death, massive infiltration of lymphocytes into the brain parenchyma, raise in intracranial 

pressure due to cerebral oedema and activation of several stress and apoptotic pathways 

contribute to CM pathology. In this connection we were in search for drugs which could 

mitigate, if not all, atleast few of the above said processes that contribute to the disease. 

Pentoxifylline has been shown to have neuroprotective properties in diverse models of 

neurodegeneration and CNS injury and is of potential interest in the treatment of vascular 

diseases, in general, and of stroke, in particular, because of their vasodilating properties (Banfi et 

al., 2004; Kruuse et al., 2000; Vakili and Zahedi khorasani, 2007). The decision to use 

Pentoxifylline in our model is based on the fact that it is a potent TNF-α inhibitor. Further 

Pentoxifylline has been shown to reduce oxidative stress, downregulation of cell adhesion 

molecules on endothelial cells such as ICAM, VCAM and E-selectin. Moreover PTX also 

inhibits the activation and release of proinflammatory cytokines from microglia (Chao et al., 

1992). Further in earlier studies it was shown that Pentoxifylline was shown to protective in 

cerebral malaria and infact in atleast one study it was shown that administration of PTX 

attenuates hippocampal neuronal cell death in experimental cerebral malaria. However the 

mechanism by which PTX mitigates the disease is not known. So in order to gain mechanistic 

insights as to how PTX attenuates neuronal cell death we administered PTX in PbA infected 

C57BL/6J mice. The decision to use PTX at a dose of 60 mg/kg body weight was taken based on 

the earlier reports which confirm the inhibitory effects of PTX in mice (Kremsner et al., 1991). 

Infact, our results were in consistent with earlier reports where in administration of PTX in PbA 

infected mice increased the survivality significantly (Kremsner et al., 1991). However, in this 

study we decided to use PTX at a dose of 60 mg/kg body weight twice a day because of its short 
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half-life as revealed in a study after examining the detailed pharmacokinetics of PTX in mice 

(Wyska et al., 2007). To assess whether PTX reduces neurological lesions and peticheal 

hemorrhages that are so frequent in PbA infected mice brain (Lackner et al., 2006), we 

performed H & E staining of the brain sections taken from all the three groups, viz., control, 

infected and PTX treated mice. We selected the three different neuroanatomical regions viz., 

cortex, striatum and hippocampus because they are involved in movement and coordination and 

infact PbA infected mice shows defects in movement and coordination with symptoms ranging 

from but not limited to stupor, hemiplegia, dysplegia, paraplegia coma and finally death. In our 

results we found more number of neurological lesions and irreversible neuronal damage in 

striatal regions and therefore we restricted our immunohistochemical studies mainly to striatum. 

Further treatment with PTX showed reduced hemorrhages, healthy parenchyma, very few to no 

neurological lesions and almost no cells indicating apoptotic morphology. Further infected mice 

which received PTX showed no behavioral abnormalities indicating that PTX is neuroprotective, 

with no hemorrhagic foci in the brain and increases survivality in mice. 

   Excessive synthesis of TNF-α during the pathology of cerebral malaria can be harmful to the 

host. In fact Grau et al., has proposed that TNF-α is a central mediator in the pathological 

manifestation of the disease (Grau et al., 1987). Although the exact mechanisms by which TNF-

α mediates the neurologic changes that characterize CM remain obscure, it was shown that TNF-

α up-regulates the expression of cell adhesion molecules on the endothelium lining the blood 

vessels in the brain. In this connection we first checked whether PTX attenuates the excessive 

production of TNF-α in the murine brain infected with PbA. Our results suggest that PTX 

effectively inhibited the excess production of TNF-α. Further, inhibition of TNF-α is also 

accompanied by the attenuation of ICAM1 expression which is the major docking site for the 

parasitized erythrocytes in the brain micro-capillaries. Since sequestration is complex process 

which involves upregulation of endothelial cell adhesion molecules and binding of parasitized 

erythrocytes to these molecules, we next wanted to check whether PTX has any effect on 

parasitemia and tissue specific parasite load. Further the protective effect of PTX that we 

observed in PbA infected mice could also be due to its inhibitory effect on the development of 

parasite. To rule out this scenario we have compared parasitemia of PTX treated mice with that 

of PbA infected animals. Our results suggest that PTX has no effect on the parasite as the 

parasitemia levels of both infected and treated groups were similar. Further we checked MSP1 
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expression levels (which is a marker for blood stage parasites), and our Real Time PCR results 

suggest that MSP1 expression levels in the brain taken from infected and treated animals are 

same suggesting that PTX does not affect sequestration. 

  One of the major findings in this study is that administration of PTX in a mouse model of 

cerebral malaria markedly reduces the influx of inflammatory cells into the region of injury. By 

this mechanism, PTX attenuates the production of proinflammatory cytokines, which in turn, 

results in a much smaller volume of injury. To this end we first checked the disruption of blood 

brain barrier (BBB) in mice infected with PbA. As shown in our results disruption of blood brain 

barrier is extensive in PbA infected mice brains whereas PTX administration inhibited the BBB 

disruption. Further in our model, disruption of BBB also leads to the infiltration of inflammatory 

cells specifically cd4 and cd8 T cells which are earlier implicated in the pathology of cerebral 

malaria. PTX administration, on the other hand, totally reversed the inflammatory cells 

infiltration into the brain parenchyma and associated proinflammatory cytokine production. In 

fact, results from our RayBio Tech inflammatory antibody array suggest that at least 21 different 

cytokines/chemokines which are up regulated in the brain during PbA infection are significantly 

attenuated upon administration of PTX in PbA infected mice suggesting that PTX is 

immunomodulatory. Our results are in agreement with earlier observations where in PTX was 

found to be immunomodulatory (Rieneck et al., 1993). 

  Results from our lab and also elsewhere show that PbA infection is accompanied by profound 

neuronal apoptosis (Anand and Babu, 2011; Lackner et al., 2007; Potter et al., 2006; Shukla et 

al., 2006; Wiese et al., 2006). In addition to immunomodulatory role, PTX also has been shown 

to exert anti-apoptotic effects by inhibiting caspase-3, and inhibiting the release of cytochrome c 

from mitochondria (Jean Harry et al., 2003; Okamoto, 1999). These actions likely contributed to 

our in vivo finding of reduced caspase-3 activity as well as in our immunohistochemistry 

findings (Flouro-Jade B staining) showing reduced apoptosis. Furthermore caspase-3 positive 

cells also stained positive for Flouro-Jade B, implicating that caspase-3 is involved in neuronal 

cell death in PbA infected mice brains. All these effects were reversed upon administration of 

PTX in PbA infected mice indicating that PTX interferes with caspase-3 induced neuronal cell 

death. Further we also observed the upregulation of stress activated protein kinases in PbA 

infected murine brain. Administration of PTX, however, resulted in attenuation of pro-apoptotic 
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stress activated protein kinases indicating that PTX also modulates the expression of these 

molecules. In short PTX was found to be neuroprotective in our model and could be an attractive 

candidate for clinical assessment because it might alter the course of the disease when given 

along with standard anti-malarials.  
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Introduction	
     Malaria remains one of the world’s greatest public health challenges and remains 

prevalent in tropical areas of Americas, many parts of Africa, Indian subcontinent, and 

also in South East Asia. According to WHO estimates, 90% of the global disease 

incidence was borne by Africa alone. Cerebral Malaria (CM) is a severe neurological 

complication of Plasmodium falciparum infection involving sequestration of parasitized 

red blood cells (PRBCs) in the cerebral microvasculature. The adhered PRBCs interact 

with the endothelial cells lining the vasculature leading to the dysfunction of blood brain 

barrier (BBB) resulting in infiltration of inflammatory cells into the brain parenchyma, 

release of proinflammatory cytokines, glial activation and neuronal cell death. The 

pathophysiological consequences of CM is poorly understood since most of the 

information regarding cerebral malaria is from post-mortem analyses, which cannot tell 

much about the sequence of events leading to the neuronal cell death. C57BL/6J mice 

infected with asexual stages of Plasmodium berghei ANKA (PbA) is the most widely 

accepted model for studying cerebral malaria and have been shown to develop similar 

neurological complications as that of humans. Further PbA infected mice develop 

neurological complications such as ataxia, hemiplagia, seizures, paralysis and coma by 

day 5 post infection (PI) and usually die by day 6-9 PI often with low parasitemias not 

exceeding 15%. The importance of cytokines, especially TNF-α and IFN-γ, and their 

contribution to severe malaria have been extensively surveyed (Grau et al 1987; Hommel 

1996; Miller 1994). High circulating levels of TNF-α and IFN-γ are more often found in 

patients with severe malaria than in uncomplicated cases (Kwiatkowski et al. 1990). 

Extensive deposition of TNF-α, IFN-γ, IL-1, IL-6 in organs with massive sequestration 
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(especially in brain) is more frequently seen in patients who died of CM. TNF is also 

raised in placental malaria and is associated with low birth weight (Fried et al. 1998; 

Moorman et al. 1999). Grau and colleagues hypothesized that excessive TNF-α 

production plays a decisive role in the pathogenesis of murine CM (Grau et al., 1987). 

This fact is backed by subsequent findings: (i) elevated levels of serum TNF-α is found 

only at the time of the neurological complications; (ii) a single injection of anti-TNF-α 

antibody on day 4 or 7 fully protected infected mice from cerebral malaria without 

modifying the parasitemia and (iii) injection of recombinant TNF-α to a CM-resistant 

strain of mouse makes it susceptible to CM. In addition, de Kossodo and Grau (1993) 

found decreased levels of IL-4 (which antagonizes the effects of TNF-α) along with 

upregulation of TNF-α mRNA in the brains of CM-susceptible mice suggesting a role for 

TNF-α in the pathology of CM. Further it was found that in tumor necrosis factor 

receptor 2 (TNFR2) deficient mice are resistant to CM (Lucas et al. 1997). However in 

another study, infected mice were not protected even after administration of TNF-α 

neutralizing antibody (Hermsen et al., 1997). In a study involving 178 Gambian children, 

Kwaitowski et al (1990), found that plasma TNF-α level in fatal cases involving CM 

were at least 10 fold higher than their normal counterparts. This suggests that excessive 

TNF-α production during the pathology of CM makes humans susceptible to neurological 

manifestations and its fatal outcome. Paradoxically, in another study involving 600 

Gambian children it was found that neurological sequelae increased after the 

administration of TNF-α antibody suggesting that the antibody may act to retain TNF 

within the circulation and thereby prolong its effect (van Hensbroek et al., 1996). TNF-α 

produced by monocytes or glia enhances the release of cytokines, ROS, nitric oxide, 
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superoxide production and potentiates glutamate receptor induced neurotoxicity. All 

these factors have been implicated in the pathogenesis of cerebral malaria. Further, the 

proinflammatory cytokine TNF- α, when produced in excess also upregulates the 

expression of cell adhesion molecules, ICAM and VCAM on the endothelial cells lining 

the brain microvasculature. This results in the congestion of blood vessels, as ICAM and 

VCAM mediate the binding of PRBC to the endothelial cells; leading to marked decrease 

in cerebral blood flow and neuronal damage at advanced stages. Therefore, the search is 

on for compounds which are cheap, easily available and with no tolerable side effects 

combined with a protective potential when administered several hours after infection.  

      Central nervous system is the major site of complications during malaria infection: 

According to immunopathogenesis hypothesis host toxic mediators, directed against the 

intraerythrocytic form of the parasite, could cause non-specific tissue damage due to their 

untargeted mechanism of action (Clark et al., 1981). Due to this non-specific mode of 

action the CNS vascular endothelium is damaged resulting in cerebral oedema and 

haemorrhage ultimately leading to coma and death. Indeed cerebral microvascular injury 

is a common phenomenon of both murine CM and human CM (Brown et al., 1999; Chan-

Ling et al., 1992; Thurnwood et al., 1988; Neill and Hunt 1992). Supporting evidence put 

forward by Medana et al., suggests that astrocytes and microglia are actively involved in 

the development of the cerebral complications associated with malaria infection. 

Accordingly BBB disruption during the pathogenesis of CM results in the release of 

cytokines, malarial toxins and immune cells into the brain parenchyma thereby locally 

altering the immune and supportive functions of astrocytes and microglia. Activated 



[4] 

 

astroglia and microglia in turn produce proinflammatory mediators and toxins which are 

detrimental to the neurons leading to CNS dysfunction (Medana et al., 2001). In the 

present study, we have addressed the possible role of ER stress signaling and JNK 

signaling in mediating neuronal cell death in an experimental model of cerebral malaria. 

We further tested the neuroprotective efficacy of SP600125 (a specific JNK inhibitor) 

and Pentoxifylline (TNF-α inhibitor and immunomodulatory agent) in a murine model of 

cerebral malaria.  

The objectives of this work include: 

1) To study whether ER stress signaling pathway is activated in experimental cerebral 

malaria (ECM). 

2) To study whether JNK signaling pathway is activated in ECM. 

3) To study whether administration of SP600125 (a specific JNK inhibitor) is 

neuroprotective in ECM. 

4) To study whether administration of Pentoxifylline (TNF-α inhibitor and 

immunomodulatory agent) is neuroprotective in ECM. 

ER	 stress	 and	 Neurodegeneration	 in	 cerebral	 malaria:	 PERK‐	 p‐
eIF2α	axis	is	activated	and	mediates	neuronal	cell	death	in	cerebral	
malaria:		
The Endoplasmic reticulum (ER) is a cell organelle which plays a pivotal role in the 

synthesis, folding, posttranslational modifications and trafficking of secretory and 

membrane proteins, calcium storage and release, lipid biogenesis and apoptosis. 

Perturbations in ER functioning may lead to accumulation of misfolded proteins in the 

ER lumen and ER in turn initiates an adaptive response known as the unfolded protein 
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response (UPR) that protects the cell against the accumulation of misfolded proteins. 

However, if the ER stress is excessive and prolonged, these adaptive responses fail to 

compensate and UPR leads to cell death by both caspase-dependent and caspase-

independent pathways. UPR is initiated by the binding of ER chaperone BiP/GRP78 to 

the misfolded proteins. Under normal physiological conditions, BiP forms a complex and 

suppress the activity of three proximal ER-resident stress sensors: PKR-like ER kinase 

(PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 

(ATF6). During ER stress, BiP binds to misfolded proteins thereby releasing PERK, 

IRE1 and ATF6 from the complex. Upon its release from BiP, PERK is activated by 

homodimerization and autophosphorylation, and subsequently the kinase domain of 

PERK phosphorylates eIF2α (peIF2α) thereby shutting down global protein synthesis. 

However, phosphorylation of eIF2α can also lead to selective translation of activating 

transcription factor 4 (ATF4) which in turn activates the transcription of pro-survival 

genes. IRE1 is activated by dimerization and trans-autophosphorylation upon its release 

from BiP. Activated IRE1 splices XBP1 mRNA, resulting in a translational frameshift 

and formation of potent transcriptional activator, inducing the transcription of ER stress 

responsive genes. Following its release from BiP, ATF6 is transported to Golgi, where it 

is cleaved by site-1 and site-2 proteases, generating a 50kDa transcription factor 

(ATF6p50) that translocates to the nucleus thereby inducing the transcription of ER stress 

genes. Further the role of ER stress pathways in mediating neuronal cell death has been 

well documented in several neurodegenerative diseases like Alzheimer’s and Parkinson’s 

disease, Amyotrophic Lateral Sclerosis, Transmissible Spongiform Encephalopathies and 

ischemia (Lindholm et al., 2006). The present study examines the role of ER stress 
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proteins in modulating neuronal cell death in ECM, with particular emphasis laid on 

PERK-eIF2α axis. 

Salient findings: 

 Histopathological analysis of brain tissue sections taken from control and infected mice 

showed that apoptotic neuronal cell death is widespread in mice infected with PbA. This 

fact is further supported by induction of proapoptotic mediators like caspase-3, caspase-7, 

caspase 12, Bax and suppression of antiapoptotic Bcl-2 in CM infected brains. 

 All the three branches of ER stress signaling pathway (PERK, IRE1 and ATF-6) is 

activated in the brains of mice infected with PbA. 

 Western blot analysis and immunohistochemical analysis of brains taken from control 

and infected mice revealed that p-eIF2α is upregulated and is localized in neurons. 

 Further, the downstream effectors of PERK-eIF2α axis viz. ATF4 and CHOP were 

upregulated and are localized in neurons in PbA infected brains. 

 Flouro jade B (a fluorescent marker which detects dying neurons) staining of sections 

taken from both the groups revealed that Flouro jade B positive cells are present in only 

infected brain but not in control brains. Further p-eIF2α was found to be colocalized with 

Flouro Jade B positive cells indicating that p-eIF2α plays a crucial role in neuronal cell 

death in ECM. 

 From this study we conclude that PERK-eIF2α axis of ER stress signaling pathway is 

activated and mediates neuronal cell death in murine cerebral malaria. 
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c‐Jun	N	terminal	kinases	(JNK)	are	activated	in	the	brain	during	the	
pathology	of	Experimental	Cerebral	Malaria.	
c-Jun N-terminal kinases (JNK) are serine/threonine protein kinases that phosphorylate 

serine 63 and 73 at the N-terminal domain of c-Jun thus activating the transcriptional 

activity of AP-1 (Karin et al. 1997; Davis 2000).  JNK signalling is activated by various 

stress stimuli such as UV and ionizing radiation, heat shock, inflammatory cytokines, 

metabolic inhibitors, and osmotic or redox shock (Davis, 2000). There are three different 

isoforms of JNK with 10 different splice variants. Of these JNK 1 and 2 are ubiquitously 

expressed and have a critical role in neural development, while JNK 3 is restricted to 

neural and cardiac tissues and is more closely involved in stress-induced neuronal 

apoptosis. JNK is activated by dual phosphorylation of Thr 183 and Tyr 185 situated in 

the activation loop by the upstream JNKK1/MKK4/SEK1 and JNKK2/MKK7. Once 

activated JNK phosphorylates a variety of transcription factors like c-Jun, ATF2, Elk, 

p53 and c-Myc and also members of Bcl-2 family (Bim, Bcl-2, Bcl-xL and BAD) (Liu 

and Lin 2005). Phosphorylated c-Jun forms homo or hetero dimers forming AP-1 

transcription factor which then regulates the expression of genes in response to a variety 

of stimuli such as cytokines, growth factors, stress, and bacterial and viral infections. In 

addition, phosphorylation of c-Jun and subsequent AP-1 mediated gene expression is a 

key event that mediates neuronal apoptotic processes since blockade of c-Jun activity by 

antisense oligonucleotides attenuated neuronal cell death in primary rat hippocampal 

cultures (Schlingensiepen et al. 1994). While there is overwhelming evidence of 

involvement of JNK pathway in the neuronal cell death in several neurodegenerative 

diseases like Alzheimer’s, Parkinsons’s disease and stroke (Borsello and Forloni 2007), 
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little is known of its involvement in cerebral malaria. In the current study we addressed 

the possible role of JNK in the induction of neuronal cell death during ECM.   

Salient findings: 

 Western blot analysis using antibodies against phosphorylated forms of MKK4, JNK, c-

Jun and nonphosphorylated form of JNK, during the course of infection revealed that 

JNK signaling pathway is activated in the brains of terminally infected mice. 

 Immunohistochemistry of brain sections taken from PbA infected animals or uninfected 

controls, confirm the induction of p-JNK that was so evident in our western blot analysis. 

 Double immunoflouroscent analysis of p-JNK with MAP2, a neuronal marker; revealed 

neuronal induction of p-JNK in infected mouse brain sections, implying that neurons are 

the principal cell types in which p-JNK is activated in murine cerebral malaria. 

 Flouro jade B staining of sections taken from both the groups revealed that Flouro jade B 

positive cells are present in only infected brain but not in control brains. Further p-JNK 

was found to be colocalized with Flouro Jade B positive cells indicating that p-JNK plays 

a crucial role in neuronal cell death in ECM. 

 From this study we conclude that p-JNK is activated and mediates neuronal cell death in 

murine cerebral malaria. 

The	specific,	reversible	JNK	inhibitor	SP600125,	improves	survivality	
and	attenuates	neuronal	cell	death	in	ECM.	
“During the past decade, pharmaceutical research on these diseases has shifted focus 

from symptomatic benefit to developing novel disease modifying agents. A key driver of 

this focus is the enhancement in fundamental knowledge of the mechanisms governing 

neuronal survival and death. JNK plays an integral role in neuronal death and this 
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pathway might be operative in various central nervous system (CNS) disease states” 

(Manning and Davis, 2003). The small molecule chemical inhibitor SP600125 

(anthra[1,9-cd]pyrazol-6(2H)-one), has been reported to be a potent and selective 

inhibitor of JNK1, -2, and -3 with more than > 20 fold selectivity over other related MAP 

kinases (Bennett et al., 2001). Administration of SP600125 has prevented neuronal 

apoptosis following ischemia or ischemia/reperfusion of the brain. Apart from its 

inhibition of JNK activity, SP600125 was also shown to inhibit a number of pro-

apoptotic events such as the activation of pro-apoptotic Bcl2 family members, the release 

of mitochondrial cytochrome c into the cell cytosol, or the activation of pro-apoptotic 

caspase family of proteases (Guan et al., 2006). SP600125 administered intraperitoneally 

1 h before and 6 h in model of early brain injury after subarachnoid hemorrhage 

demonstrated benefits such as the suppression of caspase activation and concomitant 

neuronal injury, improved blood–brain barrier preservation, reduced brain swelling, and 

improved neurological function (Yatsushige et al., 2007). SP600125 also prevented 

apoptosis of dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP) model of Parkinson's Disease (Wang et al., 2004) as well as neurons in the acute 

injury accompanying spinal cord trauma (Yin et al., 2005). Taken together, these results 

support the further development of JNK inhibitors as neuroprotective agents and their use 

in a variety of brain insults. Earlier we reported that JNK group of MAP kinases are 

activated and mediates neuronal cell death in ECM (Anand and Babu, 2011). Here we 

report for the first time that SP600125, a specific, reversible, ATP competitive inhibitor 

of JNK, attenuates neuronal cell death and improves survivality in PbA infected mice. 

Salient Findings: 
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 Survival of mice infected with PbA was significantly increased (p = 0.0001) in group that 

received SP600125 from day 1 post-infection (30 mg/kg body weight). 

 Administration of SP600125 in PbA infected mice has no effect on parasitemia indicating 

that the protective effect of SP600125 may be due to the modulation of host responses 

and not due to its inhibitory effect on parasitemia. 

 Further, H&E staining of brain sections from infected mice showed distinct neurological 

lesions, with parenchymal microhemorrhages, disruption of vessel walls and adherence of 

leucocytes to the vessel walls when compared to uninfected controls. In contrast, 

SP600125 treated mice have a healthy parenchyma, clear vessels with little or no 

hemorrhage. 

 Immunoblot analysis of p-c-Jun, active caspase-3, COX-2 and TNF-α revealed that 

administration of SP600125 in PbA infected mice dramatically reduced their levels 

indicating that SP600125 treatment attenuates inflammation and apoptotic cell death in 

ECM. 

 Active caspase-3 immunostaining of sections taken from control, infected and treated 

animals revealed caspase 3 positive cells in infected brain sections but not in control and 

treated groups indicating the protective effect of SP600125 in ECM.  

 Since active caspase-3 is implicated in neuronal cell death we next investigated the 

viability of neurons by staining the sections taken from all the 3 groups with Flouro-Jade 

B. We found Flouro-Jade B positive cells in infected group only but not in control or 

treated groups. 
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Pentoxifylline	 improves	 survivality	 and	 attenuates	 neuronal	 cell	
death	in	ECM.	
Pentoxifylline (PTX) is a methylxanthine derivative that has been used for treatment of 

chronic occlusive arterial disease because of its rheological actions. PTX acts primarily 

by increasing red blood cell deformability, reducing blood viscosity, and decreasing the 

potential for platelet aggregation and thrombus formation. In addition, PTX has effects on 

the inflammatory response. It has been shown to improve survival in sepsis models by 

decreasing TNF-α, interleukin IL-1β and IL-6 levels and to inhibit the LPS-stimulated 

production of multiple cytokines in alveolar macrophages. PTX is known to inhibit 

phosphodiesterase, thereby increasing cytoplasmic cyclic adenosine monophosphate 

levels and resulting in serious inhibition of TNF-α gene transcription (Kremsner et al., 

1991). In addition to inhibiting cytokines, PTX is also known to reduce the TNF-α 

induced upregulation of E-selectin, ICAM and VCAM in endothelial cells thereby 

inhibiting the adhesion of neutrophils. It also inhibits adhesiveness, degranulation, and 

superoxide production of activated neutrophils and the production of nitric oxide by 

macrophages. Because of its ability to counteract multiple proinflammatory mediators 

simultaneously PTX seems a useful agent to attenuate the generalized inflammatory 

response leading to the organ failure observed in cerebral malaria (Di Perri et al., 1995; 

Das et al., 2003; Looareesuwan et al., 1998). 

Salient findings: 

 Pentoxifylline (PTX) improves the survivality in Plasmodium berghei ANKA (PbA) 

infected mice. 
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 H & E staining of the brain sections taken from control, infected and PTX treated mice 

and we found that neurological lesions and neuronal cell death were widespread in 

infected mice when compared to control or PTX treated mice brain sections. 

 Administration of PTX completely abrogated the induction of TNF-α.  

 Administration of Pentoxifylline inhibits the disruption of blood –brain barrier that is so 

common in cerebral malaria. 

 Administration of Pentoxifylline blocks the leukocyte infiltration and subsequently 

changes the cytokine profiles from Th1 to Th2. 

 Pentoxifylline administration does not modulate the parasite adhesion and sequestration 

and Pentoxifylline has no effect on parasitemia. 

 Pentoxifylline modulate the expression pattern of several key proteins associated with 

stress. 

 Further caspase 3 immunostaining of sections taken from control, infected and PTX 

treated animals revealed caspase 3 positive cells in infected brain sections but not in PTX 

treated groups indicating the protective effect of PTX in cerebral malaria. 

 Control and PTX treated mouse brain sections stained very little for Flouro-Jade B, where 

as in infected mouse brain sections a robust increase in Flouro-Jade B staining cells was 

observed. This sort of staining pattern clearly indicates that neuronal cell death is wide 

spread in infected mouse brain sections as compared to control and PTX treated animals. 

 Our results suggest that Pentoxifylline inhibits neuronal cell death, improves neurological 

outcome and survivality in mice infected with PbA and Pentoxifylline can be used as an 

adjuvant along with standard anti-malarials. 
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