

Development of FPGA based Coprocessors for

Signal Processing Applications

A thesis submitted in partial fulfillment of the requirements
for the award of the degree of

DOCTOR OF PHILOSOPHY

in
Electronic Sciences

By
Rangababu P.
(06PHPE01)

School of Physics

University of Hyderabad
Hyderabad-500 046

India

August-2013

School of Physics

University of Hyderabad

Hyderabad, India

DECLARATION

I, Mr.RANGABABU P. (06PHPE01) here by declare that the work embodied in

this dissertation entitled “Development of FPGA based Coprocessors for Signal

Processing Applications“ submitted to the University of Hyderabad, Hyderabad,

for partial fulfillment of the degree of Doctor of Philosophy in Electronic Sciences

has been carried out by me under the supervision of Dr. SAMRAT L. SABAT,

School of Physics, University of Hyderabad. To the best of my knowledge, this

work has not been submitted for any other degree in any university.

RANGABABU P. (06PHPE01)

Ph.D (Electronic Sciences)

Reg. No: 06PHPE01

Date:

http://sop.uohyd.ernet.in/
http://www.uohyd.ac.in
http://www.uohyd.ac.in
http://acad.uohyd.ac.in/couMT.html
http://sop.uohyd.ernet.in/
http://www.uohyd.ac.in
http://acad.uohyd.ac.in/couMT.html

School of Physics

University of Hyderabad

Hyderabad, India

CERTIFICATE

This is to certify that the work described in this thesis entitled ”Development of

FPGA based Coprocessors for Signal Processing Applications” has been carried

out by RANGABABU P. (06PHPE01) under my direct supervision and this has

not been submitted for any degree or diploma at this or any other university.

Dr. SAMRAT L. SABAT,

Reader,

School of Physics,

University of Hyderabad.

Date:

Prof. S. CHATURVEDI,

Dean,

School of Physics,

University of Hyderabad.

Date:

http://sop.uohyd.ernet.in/
http://www.uohyd.ac.in
http://sop.uohyd.ernet.in/
http://www.uohyd.ac.in
http://sop.uohyd.ernet.in/
http://www.uohyd.ac.in

To

My Beloved Grand Parents

(Late Sri. Peesapati Chinni Krishnamacharyulu)

&

(Late. Smt. Peesapati Seshamma),

who expired during my term here as Ph.D scholar.

May God give peace to their kind souls . . .

Acknowledgements

This work would have never been accomplished without God blessings and his

power that work within me.

I would like to express my sincere gratitude to my research supervisor

Dr. Samrat L. Sabat for his constant support, encouragement and introducing

me to the exciting research topic: System-on-Chip on various signal processing

applications, for giving me the opportunity to work, teaching me many principles

and techniques, and for his guidance during the research. He has always been

approachable, helpful, and extremely patient in his guidance throughout my re-

search period. The research has been a learning and growing experience for further

exploration of new technologies for me.

I would thank Prof.S. Chaturvedi, Dean, for providing all the necessary facil-

ities to carry out my work. I also thank Prof.G. Rajaram, Prof.M. Ghanashyam

Krishna, Prof.K.C. Jamesraju, Dr.K. Venu, Dr.P.A. Govindacharyulu, Dr.S.V.S

Nageswara Rao, and former M.Sc teachers Dr.T.S.N. Somayaji, Dr.D. Sharma,

Mr.K. Durgaprasad, Mr.R. Satyanarana. Mr.S.V.N.L. Narayana, Dr. Perisastry,

Mr.B.V.G. Krishnarao and Mrs.B.V.G. Vasanta for their valuable suggestions and

encouragement.

Financial assistance from the Research Center Imrat (RCI), DRDO, Depart-

ment of Science and Technology (DST) and Indian Space Research Organization

(ISRO) India is gratefully acknowledged. I am also deeply indebted to the author-

ities at RCI, Engineers, Scientists, for their suggestions and thus help in various

aspects of my research. I wish to extend my sincere thanks to the University au-

thorities and Xilinx (XUP) for providing all the necessary facilities for this work

and their technical support team Hemasundar, Balakrishna-ahirwal, Saritha.

iv

Acknowledgements v

I am thankful to my lab mates A.Kiran kumar, K.Shravan, K.P.Karthik,

B.Swamy, Sai, Gopalakrishna, A.Sivaram, A.Bharadwaj, Layak Ali, N.Giribabu,

B.Ravikishore reddy, M.Narshimappa, S.Srinu, P.Srihari, D.Ajay, D.Kishore, Lak-

shminarayana, K.Sridevi, K.Vasu, B.Sithalakshmi, B.Yugandhar, Ramu, Senthil,

Venkiah. Also my school and college mates D.Phanikumar, Ch.Satyasai brothers,

M.Balakrishna, M.Jagadeesh, T.B.S.Prasad, K.Ravikumar, P.Yellaji, Chittian-

naya, P.Ranganath, Ch.Sudhnvacharyulu, B.Gopalacharyulu, P.S.M.Raghavan,

K.M.S.Srinivas for their co-operation and suggestions. I wish to take this op-

portunity to thank all my friends who encouraged and helped me throughout my

research work.

I wish to thank Mr.Abraham for his help in all aspects of administra-

tion. I would like to thank Bansilal, subbiramireddy and other non-teaching staff

members of School of Physics for their help and co-operation, during my research

tenure.

I would be failing in my duties if i do not make a mention of my family mem-

bers including my mother, father, grand mother, brother, sister, brother-in-law,

uncle & aunt and my wife and son for providing moral support, without which

this work would not have been completed.

I would like to thank everyone who has helped me, knowingly or unknowingly

during my whole research work.

Rangababu Peesapati

Abstract

Now-a-days there has been an increase in demand for designing recon-

figurable embedded systems in signal processing, multimedia and evolutionary

computation applications. Embedded processors alone, cannot achieve the de-

sired computational capability to fulfill the requirements of massive parallelism,

higher memory bandwidth, higher execution speed to execute these applications.

In order to meet these requirements, Field Programmable Gate Arrays (FPGAs)

are used by exploiting the reconfigurable resources. Beyond their well-known flex-

ibility, FPGAs offer the versatility of running software applications on embedded

processors and at the same time taking the advantage of available reconfigurable

resources, all on same package.

FPGA based System on Chip (SoC) design solution replaces traditional System on

Board (SoB) design concept and is often referred as Programmable SoC (PSoC).

This platform consists of hard/soft embedded processors, external memory and

custom Intellectual Properties (IPs). These IPs are used to accelerate the com-

putational task of an algorithm. This involves developing dedicated IP and its

integration in SoC platform. There are mainly two types of IP interfacing tech-

niques, i.e., Slave Unit (SU) and Auxiliary Processing Unit (APU). The SU inter-

face has Register/First-In-First-Out (FIFO) connected to the processor through

shared system bus (Processor Local Bus (PLB)). Although this interface is simpler

in design, the main bottleneck is bus arbitration, which lowers the total execu-

tion speed. The other bus interface is APU (only for PowerPC440), which can

be directly connected to the custom IP through a dedicated Fabric coprocessor

Bus (FCB). This interface has no communication overhead and allows quick syn-

chronization between the processor and IP. Custom IPs have been developed and

integrated using APU interface for maximizing the portability and modularity.

vi

Abstract vii

The work presented in this thesis concentrates on developing efficient copro-

cessors for three signal processing applications of different complexities in Xilinx

(Virtex-5FX70T-1136) development platform. In this work, several important

issues related to the efficiency of bus interface, data transfer overhead, and accel-

eration factors are analyzed. In the first case study, Adaptive Moving Average

Dual Mode Kalman Filter (AMADMKF) algorithm is proposed for denoising the

FOG signal under both the static and dynamic environments. Performance of

the AMADMKF algorithm is compared with other denoising algorithms Discrete

Wavelet Transform (DWT) and Kalman Filter (KF). Allan Variance analysis,

standard deviation and Signal-to-Noise Ratio (SNR) are used to measure the ef-

ficiency of the algorithm. The experimental results have shown that AMADMKF

algorithm reduces the standard deviation or drift of the signal by an order of 100

and improves the SNR by approximately 80dB. The Allan Variance analysis result

has shown that this algorithm reduces different type of random errors significantly.

Further, a hardware IP of the algorithm is developed for SoC implementation us-

ing Xilinx Virtex-5 FPGA. The developed IP is interfaced as a coprocessor/APU

with the PowerPC440 (PPC440) embedded processor within the FPGA. Hardware

acceleration of the developed coprocessor is found to be 65x with respect to its

equivalent software implementation.

In the second case study, IPs for fixed and floating point Differential Evolution

(DE) algorithm has been developed. The IPs are interfaced using both APU and

SU interface techniques with the PPC440 processor. In order to reduce the bus

overhead in hardware software co-design platform, the fitness evaluation and DE

algorithm are combined together as a single module rather than fitness evaluation

in software and DE in hardware. The hardware acceleration of the IP (fixed &

float DE) using both interfaces are evaluated with respect to its equivalent software

implementation. The performance of IP using both the interfaces are compared.

For the purpose of validation, initially, the DE IP is tested by solving benchmark

test functions followed by a case study of solving system identification problem.

The performances (i.e. acceleration and power consumption) of IPs are measured

on 32-bit X86, PPC440 and Microblaze (MB) processors with enabling/disabling

hard floating point unit (FPU).

The experimental results reveal that, both interfacing techniques give same

acceleration factor. The floating point IP gives higher acceleration compared to

the fixed point IP. This is because the floating point software implementation

Abstract viii

takes higher execution time. As far as power consumption is concerned, both

interfaces (SU, APU) consumed same power. Fixed point DE SoC consumes

marginally higher power for optimizing simpler functions whereas, floating point

DE SoC consumes more power for optimizing complex functions. Finally, as a

case study, an Infinite Impulse Response (IIR) filter based system identification

task is implemented using the developed fixed and float DE IP cores (as an APU

interface) on the SoC platform. The experimental result has shown that the fixed

and float IP attained an acceleration of 11x and 150x with respect to its software

implementation in the PPC440 processor.

In the third case study, a single IP core for Baseline profile H.264 decoder

is developed. The SoC platform is developed using the open source hardware

and software of the H.264 decoder. The developed H.264 IP is interfaced to the

PPC440 embedded processor using APU interface and it is tested with differ-

ent video sequences. It is observed that the coprocessor gives 6-7x acceleration

compared to its equivalent software decoder. Finally, this thesis concludes that,

the coprocessors developed for above signal processing case studies have achieved

adequate acceleration.

Contents

Acknowledgements iv

Abstract vi

Abbreviations xviii

1 Introduction 4

1.1 Motivation . 6

2 Background 9

2.1 Field Programmable Gate Array (FPGA) 9

2.2 Hardware Software Co-design . 10

2.3 Hardware accelerator . 12

2.4 Related works . 14

2.5 Programmable System on Chip design 16

2.5.1 Embedded Processors . 18

2.5.2 Memory . 18

2.5.3 Peripherals . 19

2.5.4 Bus interfaces . 20

2.5.5 Related tools . 24

3 Coprocessor for FOG signal Denoising 25

3.1 Introduction . 26

3.2 Denoising algorithms . 29

3.2.1 Discrete Wavelet Transform (DWT) 29

3.2.2 Kalman Filter (KF) . 30

3.2.2.1 Adjusting KF parameters 32

3.3 Proposed Hybrid Kalman Filter (AMADMKF) 34

ix

CONTENTS x

3.4 Experimental setup . 36

3.5 Simulation results . 37

3.6 FPGA implementation of denoised algorithms 45

3.6.1 Hardware architecture of DWT 45

3.6.2 Hardware architecture of KF 47

3.7 Hardware architecture of the proposed algorithm 48

3.7.1 Moving average & Memory module (MA & Memory) 49

3.7.2 Difference module (Diff) . 51

3.7.3 Variance module . 53

3.7.4 Threshold module . 53

3.7.5 Control logic . 54

3.8 Programmable System on Chip (PSoC) platform for AMADMKF

coprocessor . 54

3.9 Implementation results . 57

3.9.1 FPGA implementation of AMADMKF IP core results 57

3.9.2 PSoC implementation results 59

3.10 Conclusions . 61

4 Coprocessor for DE algorithm 63

4.1 Introduction . 64

4.2 Literature survey . 66

4.3 Differential Evolution algorithm . 69

4.4 Software profiling of DE algorithm 72

4.5 Hardware architecture of DE algorithm 76

4.5.1 Initialization module . 77

4.5.2 Mutation module . 79

4.5.3 Crossover module . 80

4.5.4 Selection module . 81

4.5.5 Fitness Evaluation module 81

4.5.6 Random Number Generator module 82

4.5.7 Floating Point Unit . 82

4.6 Programmable System on Chip (PSoC) platform for DE algorithm . 83

4.6.1 Interfacing the DE IP as a Slave Unit 85

4.6.2 Interfacing the DE IP as an Auxiliary Processor Unit 86

4.7 Experimental setup . 87

CONTENTS xi

4.8 Results and Analysis . 88

4.8.1 Simulation results . 88

4.8.2 Synthesis results . 90

4.8.3 Timing results . 90

4.8.4 SoC Resource and Power results 96

4.8.5 Convergence results . 100

4.9 Case Study: Infinite Impulse Response (IIR) system identification

using DE algorithm . 103

4.10 Conclusions . 107

5 Coprocessor for H.264 video decoder 109

5.1 Introduction . 110

5.2 Related works . 112

5.2.1 Profiles and Levels . 113

5.2.2 Encoder (forward path) . 114

5.2.3 Decoder . 117

5.3 FPGA implementation of H.264 decoder 117

5.3.1 Bitstream controller . 120

5.3.1.1 Bitstream buffer 120

5.3.1.2 Bitstream parser 121

5.3.1.3 Hybrid length decoder 121

5.3.2 Reconstruction data path 121

5.3.2.1 Intra prediction . 122

5.3.2.2 Inter prediction . 122

5.3.2.3 Deblocking filter 123

5.3.3 Display controller . 124

5.4 Programmable System on Chip (PSoC) platform for H.264 decoder 124

5.4.1 SoC platform details. 125

5.5 Results and analysis . 127

5.6 Conclusions . 131

6 Conclusions 133

List of Figures

2.1 FPGA architecture [1] . 10

2.2 Hardware software codesign [2] . 11

2.3 Hardware software codesign approach using embedded development

kit [3] . 17

2.4 Basic SoC system . 18

2.5 Processor Local Bus register interface [4] 21

2.6 APU interface system for PPC440 processor 23

3.1 FOG raw signals in static and dynamic condition 27

3.2 Adjusting KF parameters in off-line mode of the AMADMKF . . . 32

3.3 Selection of KF gain in different conditions for dynamic FOG signal 33

3.4 Discontinuity detection using AMADMKF algorithm 36

3.5 Single axis FOG . 37

3.6 Comparison of denoised results of set 1 and set 3 data under static

condition . 38

3.7 Comparison of denoised results of of set 4 data under dynamic

condition . 39

3.8 Comparison of denoised results of set 4 and y-axis data under dy-

namic and static conditions . 40

3.9 Comparison of denoised results of x-axis data under dynamic con-

dition . 41

3.10 Comparison of denoised results of x-axis data in static and dynamic

condition . 41

3.11 Comparison of Allan Variance analysis before and after denoising

of single axis static data . 43

3.12 DWT implementation procedure . 46

3.13 Single level decomposition structure 47

xii

LIST OF FIGURES xiii

3.14 Threshold selection . 47

3.15 Single level reconstruction structure 47

3.16 Sysgen KF architecture . 48

3.17 Flow chart of the proposed algorithm 50

3.18 Top level architecture of AMADMKF core 50

3.19 Architecture of Moving average and Memory module in AMADMKF

core . 51

3.20 Architecture of Difference module in AMADMKF core 52

3.21 Architecture of Variance module in AMADMKF core 52

3.22 Architecture of Threshold module in AMADMKF core 53

3.23 FPGA based SoC system . 55

3.24 FPGA based SoC testbed setup for AMADMKF in real time 56

3.25 Comparison of denoised algorithm versus hardware simulation . . . 58

3.26 Comparison of algorithm vs. SoC implementation results (static

region) . 60

3.27 Comparison of algorithm vs. SoC implementation results (dynamic

condition) . 60

4.1 Flow chart for DE algorithm . 70

4.2 Software profiling results of floating point DE algorithm (GMAX=8

and NP=50) for Fun3 . 74

4.3 Software profiling results of the fixed point DE algorithm (GMAX=8

and NP=50) for Fun3 . 74

4.4 Block diagram of fixed DE hardware 77

4.5 Hardware architecture of float DE Algorithm 78

4.6 Control unit design for hardware implementation of DE algorithm . 78

4.7 Initialization module . 79

4.8 Mutation module . 79

4.9 Crossover module . 80

4.10 Selection module . 81

4.11 Hardware architecture of 32-bit LFSR for random generator 82

4.12 PSoC platform for DE algorithm 84

4.13 Design of slave peripheral in SoC 85

4.14 Interfacing of DE APU with PowerPC Processor 86

LIST OF FIGURES xiv

4.15 Functional simulation of Fun3 fixed DE IP Core (GMAX=1 and

NP=8) . 89

4.16 Functional simulation of Fun3 float DE IP core(GMAX=1 and NP=8) 89

4.17 Comparison floating point DE in SU configuration on MB, PPC440

based SoC by enable/disable FPU (GMAX=100, NP=32) 92

4.18 Comparison of acceleration factors of fixed and float DE IP in SU

and APU configurations (GMAX=100 and NP=32) 96

4.19 Power results of all the accelerators for Fun4 and Fun6 99

4.20 Convergence rate comparison of float and fixed DE in APU config-

uration with software . 102

4.21 Block diagram of DE based IIR system identification 103

4.22 Hardware architecture for IIR filter 103

4.23 Experimental test setup for system identification 105

4.24 Convergence graphs of system identification problem in the HW

and SW . 106

5.1 H.264 decoder profile configurations [5] 114

5.2 H.264 encoder [5] . 115

5.3 H.264 decoder [5] . 116

5.4 H.264 Hardware Block diagram . 119

5.5 PSoC platform for H.264 decoder IP 126

5.6 Behavioral simulation of H.264 decoder in text file 128

5.7 Behavioral simulation of H.264 decoder 128

5.8 Post-synthesis simulation of H.264 decoder 129

5.9 Post-layout simulation of H.264 decoder 129

5.10 Software H.264 decoder profiling on PPC440 processor in standalone130

5.11 H.264 decoder profiling on PPC440 processor in petalinux OS . . . 131

5.12 H.264 Hardware coprocessor testbed setup 131

List of Tables

2.1 Comparison of Processor/DSP, FPGA, ASIC based solutions [6] . . 12

3.1 Comparison of the standard deviation of denoising algorithms . . . 42

3.2 Comparison of the SNR of denoising algorithms 42

3.3 Allan Variance analysis of set 1 data 43

3.4 Allan Variance analysis of set 3 data 43

3.5 Bias drift for dynamic condition of x-axis data at (20°) 44

3.6 Comparison of SNR for denoising algorithms for x-axis data 44

3.7 Comparison of resource utilization for denoised IP cores 59

3.8 Standard deviation of x-axis data denoising using software and

hardware . 61

3.9 Execution time of AMADMKF algorithm in SW and HW 61

4.1 Review of existing literature on FPGA implementation of evolu-

tionary algorithms . 67

4.2 Benchmark functions used for performance analysis 72

4.3 Control parameters of the DE algorithm 72

4.4 Execution time of the DE algorithm implemented in software . . . 73

4.5 Profiling results: percentage of execution time of different DE mod-

ules in PPC440 processor (Fun3, GMAX=50 and NP=8) 74

4.6 Profiling results of the software (SW) DE algorithm (GMAX=1000

and NP=8) . 75

4.7 Resource utilization of floating point DE IP core 90

4.8 Resource utilization of fixed point DE IP core 90

4.9 Average execution time of DE algorithm in X86, PPC440 and MB

processors . 91

xv

LIST OF TABLES xvi

4.10 Average execution time of float DE IP (50MHz) in SU configuration

with PPC440 and MicroBlaze based SoC (125MHz) 91

4.11 Acceleration factor of float DE IP (50 MHz) in SU configuration

with PPC440 and MicroBlaze based SoC (125MHz) 92

4.12 Average execution time of float DE IP (33MHz) in APU configura-

tion with PPC440 based SoC (200MHz) 94

4.13 Average execution time of float DE IP (33MHz) in SU configuration

with PPC440 based SoC (200MHz) [7] 95

4.14 Average execution time of fixed DE IP (33MHz) in APU configu-

ration with PPC440 based SoC (200MHz) 97

4.15 Average execution time of fixed DE IP (33MHz) in SU configuration

with PPC440 based SoC (200MHz) 98

4.16 Timing results for different dimensions in APU configuration of

fixed DE IP (NP=32) with PPC440 based SoC 98

4.17 SoC Device Utilization of floating point DE IP for Fun4 99

4.18 SoC Device utilization of fixed DE IP for Fun4 99

4.19 Power analysis of floating DE APU accelerator in SoC (mW) 100

4.20 Power analysis of floating DE SU accelerator in SoC (mW) 100

4.21 Power analysis of fixed DE APU accelerator in SoC (mW) 100

4.22 Power analysis of fixed DE SU accelerator in SoC (mW) 100

4.23 Power analysis of resources in complete SoC using floating DE IP

in APU and SU configurations (mW) 101

4.24 Power analysis of resources in complete SoC using fixed DE IP in

APU and SU configurations (mW) 101

4.25 Power analysis of SoC system for Fun6 consisting floating/fixed

point DE IP . 101

4.26 Estimated parameters of 3rd order IIR filter in SoC 106

4.27 Timing results for system identification problem using fixed and

float DE IP in APU configuration 107

5.1 Review of existing literature on H.264 decoder 113

5.2 Frequency requirement for processing 30 fps for different video res-

olutions [6] . 118

5.3 Resource utilization of H.264 decoder in SoC 131

LIST OF TABLES xvii

5.4 Evaluation of speed up for different sequences for 300 frames for

Quantization Parameter (QP)=28 132

Abbreviations

ADE - Adaptive Differential Evolutionary

ASP - Advanced Simple Profile

API - Application Programming Interface

APU - Auxiliary Processing Unit

AKF - Adaptive Kalman Filter

AVA - Allan Variance analysis

AVC - Advanced Video Coding

ASIC - Application-Specific Integrated Circuit

ASSP - Application-Specific Standard Part

AMA - Adaptive Moving Average

AMADMKF - Adaptive Moving Average based Dual Mode Kalman Filter

BRAM - Block Random Access Memory

BS - Boundary Strength

BSB - Base System Builder

CAD - Computer-Aided Design

CD -Compact Disk

CPU - Central Processing Unit

CIF - Common Intermediate Format

CLB - Combinational Logic Block

CHE -Complete Hardware Evolution

CPLD Combinational Programmable Logical Devices

CDMA - Central Direct Memory Access

CAVLC - Context Adaptive Arithmetic coding

CABAC - Context Adaptive Binary Arithmetic Coding

CRC -Cyclic Redundancy Check

CUDA -Computer Unified Device Architecture

DCM -Digital Clock Manager

xviii

Abbreviations xix

DWT - Discrete Wavelet Transform

DBF - Deblocking Filter

DE -Differential Evolution

DVB - Digital Video Broadcasting

DVI - Digital Video Interface

DDR2 - Double Density RAM

DDR-SRAM - Double Data Rate Static Random Access Memory

DCR - Device Control Register

DCT - Discrete Cosine transform

DPB - Decoded Picture Buffer

DSP - Digital Signal Processing

DMA - Direct Memory Access

DA - Distributed Arithmetic

EA - Evolutionary Algorithm

ECG - Electro-Cardio-Graphy

EDK - Embedded Development Kit

EMAC - Ethernet Media Access Control

ESL- Electronic System Level

FCB -Fabric Coprocessor Bus

FCM -Fabric Coprocessor Module

FPU - Floating Point Unit

FIFO - First In-First-Out

FIR - Finite Impulse Response

FPGA - Field Programmable Gate Array

FFT - Fast Fourier Transform

FCC -Flexible Computational Component

FSL - Fast Simple Link

FSM - Finite State Machine

FOG - Fiber Optic Gyroscope

FTIR -Fourier Transform Infrared

FPU -Floating Point Unit

FF - Flip Flop

GA - Genetic Algorithm

GE - Genetic Evolution

GPIO - General Purpose Input and Output

Abbreviations xx

GPU - Graphic Processing Unit

GPP - General Purpose Processor

GPS - Global Positioning System

HDTV - High Definition Television

HEVC -High Efficiency Video Coding

HIL - Hardware-in-the-Loop

HDL - Hardware Description Language

HW - Hardware

I/O - Input-Output

IBM - International Business Machines

IC - Integrated Circuit

ICON -Integrated Connect

IDE - Integrated Development Environment

IIR - Infinite Impulse Response Filter

ILA -Integrated Logic analyzer

ISE -Integrated Software Environment

ITU -International Telecommunication Union

JTAG - Joint Test Action Group

IDCT - Inverse Discrete Transform

IDWT -Inverse Discrete Wavelet Transform

OFDM -Orthogonal Frequency Division Multiplexing

IPCM - Intra Pulse Code Modulation

IQ - Inverse Quantization

IT - Inverse Transformation

ITU - International Telecommunication Union

ISO - International Standard Organization

IP - Intellectual Property

IPIF - Intellectual Peripheral Interface

IPIC - Intellectual Peripheral Interconnect

OTS - Off-the-Shelf

IMU-Inertial Measurement Unit

JVT -Joint Video Team

KF - Kalman Filter

LMB - Local Memory Block

LFSR -Linear Feedback Shift Register

Abbreviations xxi

LOD - Level of Decomposition

LL - Local Link interface

LUT - Look Up Table

LPM -Longest Prefix Match

LMS -Least Mean Square

HEVC -High Efficiency Video Coding

MAC - Multiply and Accumulate

MMKF - Multiple Model Kalman Filter

MB - Microblaze

µC - Micro-Controllers

MC - Motion Compensation

MCI - Memory Controller Interface

MIG -Memory Interface Generator

ME - Motion Estimation

MEMS - Micro electric Miniaturize system

MFPE - Multi Function Processing Element

MSE - Mean Square Error

MHz - Mega Hertz

MPEG - Motion Picture expert Graphic

MVP - Motion Vector Prediction

MVD - Motion Vector Difference

MV - Motion Vector

MVC - Multi View Coding

MPMC - Multi Port Memory Controller

MMKF - Multiple model Kalman filter

MRA - Multi Resolution Analysis

MUX - Multiplexer

MVC -Multi Video Coding

NAL - Network Abstraction Layer

NoC - Network on Chip

PC - Personal Computer

PSNR - Peak Signal to Noise Ratio

PLB - Processor Local Bus

PLL -Phased Locked Loop

PPC - Power PC Processor

Abbreviations xxii

PSO - Particle Swarm Optimization

PSoC - Programmable System on Chip

QCIF - Quarter Common Intermediate Format

QP - Quantization Parameter

RISC - Reduced Instruction Set Computer

RLE - Run Length Encoding

RAM -Random Access Memory

RBSP - Raw Byte Sequence Payload

RNG -Random Number Generation

RTOS -Real Time Operating System

SoC - System on Chip

STD - Standard Deviation

SNR - Signal to Noise Ratio

SRAM - Static Random Access Memory

SDK - Software Development Kit

SAD - Sum of Absolute Difference

SDTV - Standard Definition Television

SDK - Software Development Kit

SDRAM - Single Data Rate RAM

SURE - Steins Unbiased Risk Estimate

SVC - Scalable Video Coding

SW - Software

SU -Slave Unit

SPI -Serial Peripheral Interface

UART - Universal Synchronous and Asynchronous Receive and Transmit

UDI - User Defined Instructions

VGA - Video Graphic Array

VBS -Variable Block Shape

VLSI-Very Large Scale Integration

VLE- Variable Length Coding

VHDL-VHSIC Hardware Description Language

VCL - Video Coding Layer

XPS - Xilinx Platform Studio

XST - Xilinx Synthesis Tool

List of Publications

I. Research Papers published in International Refereed Journals

1. Rangababu Peesapati, Samrat L. Sabat, Kiran kumar Anumandla, Palani

Karthik Kandyala, and Nayak Jagnnath FPGA based Embedded Co-Processor

for Real time Fiber Optic Gyroscope signal denoising, International Journal

of Digital Signal Processing, Elsevier, 2013.

(in press, doi:10.1016/j.dsp.2013.04.010), IF 1.91.

2. Rangababu Peesapati, Samrat L. Sabat, K.P. Karthik, M. Narasimhappa,

N. Giribabu, and J. Nayak FPGA based Embedded platform for Fiber Op-

tic Gyroscope signal denoising, International Journal of Circuit Theory and

Applications, Willey Blackwell, 2012.

(in press, doi:10.1002/cta.1883), IF 1.29.

3. Kiran kumar. Anumandla, Rangababu Peesapati, Samrat L. Sabat, Siba

K. Udgata and Ajith Abraham, FPGA based Differential Evolution Co-

processor: A case study of spectrum allocation in cognitive radio network,

International Journal of Computer and Digital Techniques (IET), IET, 2013.

(in press, doi:10.1049/iet-cdt.2012.0109), IF 0.9.

4. Rangababu Peesapati, Samrat L. Sabat, K.P. Karthik, N. Giribabu and

J. Nayak, Efficient Hybrid Kalman Filter for denoising Fiber Optic Gyro-

scope Signal, International Journal of Optik, Elsevier, 2013.

(in press, doi :10.1016/j.ijleo.2013.02.013), IF 0.51.

viii

5. Kiran kumar Anumandla, Rangababu Peesapati, Samrat L. Sabat and

Siba K. Udgata FPGA-based implementation of the Differential Evolution

for embedded applications with a case study on system identification, Inter-

national Journal of Design Automation and Embedded Systems, Springer,

2013.(in press, doi: 10.1007/s10617-013-9107- 4), IF 0.26.

II. Research Papers published in Peer Reviewed Int. Conferences

1. Narasimhappa.M, Rangababu P., Samrat L. Sabat and Jagannath Nayak

A Modified Sage–Husa Adaptive Kalman filter method for denoising of Fiber

Optic Gyroscope signal, In proceedings of International Conference on Engi-

neering Sustainable Solutions (INDICON), 2012, India, pp. 1266-1271.

2. K.P. Karthik, Rangababu P. and Samrat L. Sabat, System on Chip im-

plementation of Adaptive moving average based multiple-model Kalman filter

for denoising Fiber Optic Gyroscope signal, In proceedings of International

Symposium on Electronics System Design (ISED), 2011, India, pp. 170-175.

3. Samrat L. Sabat, Rangababu P. and K.P. Karthik, System on chip imple-

mentation of 1-D Wavelet transform based denoising of Fiber Optic Gyro-

scope signal on FPGA, In proceedings of International Conference on Engi-

neering Sustainable Solutions (INDICON), 2011, India, pp. 155-162.

4. Samrat L. Sabat, Shravan Kumar K. and Rangababu P. Differential Evolu-

tion Algorithm for Motion Estimation, In proceedings of 5th Multi-Disciplinary

trends in Artificial Intelligence International Workshop on Artificial Intelli-

gence (MIWAI), 2011, India, pp.309-316.

5. Samrat L. Sabat, AjayKumar D. and Rangababu P. Reliable Data acqui-

sition system: In Proceedings of 2nd International Conference on Emerging

Trends in Engineering and Technology (ICETET), 2009, India, pp. 392-396.

III. Research Papers Communicated to International Refereed Journals

1. Rangababu Peesapati, Samrat L. Sabat and Kirankumar Anumandla,

Performance evolution of fixed and floating point accelerators for Differen-

tial Evolution algorithm in SoC platform, International Journal of Circuit

Theory and Applications, Willey Blackwell, (Revision submitted), 2013.

2. Rangababu Peesapati, Samrat L. Sabat and Kirankumar Anumandla,

Performance evaluation of floating point Hardware Accelerator for Differen-

tial Evolution algorithm, International Journal of Microprocessors and Mi-

crosystems, (Revision submitted), 2013.

3. Rangababu Peesapati, Samrat L.Sabat, An FPGA based APU acceler-

ator for H.264 decoder, International Journal of Computers and Electrical

Engineering, Elsevier, (Under preparation).

Chapter 1

Introduction

In the recent years, signal processing applications like data streaming, image pro-

cessing, signal denoising, video decoding etc., are used in a wide range of electronic

devices as embedded applications. The execution time of the Digital Signal Pro-

cessing (DSP) algorithm increases with the complexity of the application. This

limits its real-time applications in low end embedded processors. Embedded ap-

plications are constrained by space, power, and cost [8, 9]. Now-a-days due to

the advantages of reconfigurability, low design costs and time-to-market, DSP ap-

plications are developed using FPGAs [1, 10]. During the last decade, modern

FPGAs are available with soft and hard embedded processor cores to enable the

designer for building complex embedded applications. To enhance the execution

speed of the algorithm, dedicated hardware accelerators have been developed and

interfaced with the processor as a coprocessor in System on Chip (SoC) platform.

There are several choices for platform selection such as Micro-Controllers (µC),

Digital Signal Processors (DSP), FPGA and Application Specific Integrated Cir-

cuits (ASIC), for developing an embedded system. In order to achieve higher

performance, applications need to be implemented either in multi-processors or

in a dedicated hardware accelerators/coprocessors. The selection of platform de-

pends on factors such as performance, power consumption, cost per chip, ease of

tools accompanied by a specific platform to assist the developers for developing the

system within the constraints of system cost and project time [11]. The platforms

such as µC and DSP make use of embedded software oriented methodologies to

develop the system. However, the designers who use FPGAs as their development

4

CHAPTER 1. INTRODUCTION 5

platform, have the flexibility to use either the processor-based approach, develop-

ing their system partly in firmware and partly in hardware, or developing their

system entirely in the hardware [10]. In this work, FPGA based SoC design is

chosen because of the following reasons:

1. Selecting off-the-shelf (OTS) microprocessor for a particular application which

can meet all system requirements (like floating point arithmetic, power,

speed, ease of tool) is time-consuming. So it is advantage to find an al-

ternative which can allow designer to tailor a processor and a specific set of

features and peripherals for the application to be implemented [11]. FPGA

based design gives this flexibility to the designer compared to either µC or

DSP processor based system.

2. The designer of FPGA based embedded system has flexibility to customize

the design by adding any combination of peripherals and controllers. A

unique set of peripherals can also be designed for specific applications, and

the designer has privilege to add as many peripherals to meet the system

requirements, which cannot be done in µC or DSP processor based system.

Features which are not present in the initial phase of the design can also be

added in the later part of the design [10].

3. Hardware and software concurrent development and co-existence on a single

chip, is one of the compelling reason for choosing FPGA/SoC platform. If

a segment of the algorithm is computationally complex then a custom co-

processor (Auxiliary Processing Unit (APU)) can be designed to eliminate

such problems [12, 13].

4. These kind of systems are preferred over ASIC based SoC solution, due to

its re-programmability, Intellectual property (IP) reuse and cheaper develop-

ment cost. Although ASIC has advantages over FPGA based SoC in terms

of customized chip size, power, delay etc. FPGAs are feasible solutions for

prototyping a device before building an ASIC chip [14].

5. FPGA enables selection of an optimal platform of SoC configuration for a

typical application involving trade-offs between flexibility, cost, performance

and power consumption.

CHAPTER 1. INTRODUCTION 6

1.1 Motivation

Research efforts have been made to design customized coprocessors for signal pro-

cessing applications like signal denoising, evolutionary computation, video decod-

ing in SoC platform.

Fiber Optic Gyroscope (FOG) sensor is used in Inertial Navigational System (INS)

for measuring the angular rotation of an object. In general the gyroscope output

is noisy, which effects the accuracy of measurement. Furthermore, the complex

signal processing algorithms for denoising the signal with small footprint device

demands to develop efficient algorithm and its hardware implementation to meet

the cost, area and power requirements. For real-time applications, the signal pro-

cessing algorithms need to be implemented in the hardware and integrate it to

the FOG sensor board. Although digital signal processors are popular for imple-

menting the signal processing algorithms. In present days, FPGAs are the popular

choice for realization of DSP algorithms due to its affordable cost, reconfigurability

and faster processing. This motivated the author to develop an efficient denoising

algorithm for FOG sensor and implement the same in SoC platform.

Evolutionary Algorithms (EA) are used in real time embedded applications like

motion estimation, on-line pole placement of digital filter among many others.

These embedded applications suffer from the time-consuming evolution process of

EA to derive an optimal solution. Very little work has been reported to enhance

the execution speed of EAs for embedded applications. Thus there is a need to

develop coprocessor for computing EA in SoC platform.

H.264 video decoder is the recent decoding standard used for video compression.

Although it has better compression efficiency, it has higher computational com-

plexity. This limits its implementation in general purpose and DSP processor for

embedded application. Research efforts have been made to accelerate subtasks of

the decoder by developing accelerators. However the overall acceleration decreases

with increase in data communication between the processor and hardware mod-

ules. So there is a need to develop a coprocessor for the complete H.264 decoder

in SoC platform.

CHAPTER 1. INTRODUCTION 7

Thesis objectives and contributions

The main objectives of this thesis are: i) to develop System on Chip (SoC) so-

lutions for three different signal processing applications ranging from low to high

complexities using Xilinx Virtex-5 FPGA, ii) analyze the hardware acceleration

achieved due to SoC implementation of all the three applications. Each signal

processing application is considered as a case study.

The objective of the first case study is to minimize the gap between idea/ algo-

rithm development and embedded system design. In this case, a suitable algorithm

is developed for signal denoising and then a hardware Intellectual Property (IP) of

the algorithm is developed. Later the hardware IP/accelerator is interfaced with

the embedded processor and the hardware acceleration is evaluated.

In the second case study, a hardware accelerator for Differential Evolution (DE)

algorithm is developed and interfaced as an Auxiliary processor unit (APU) with

the embedded processor (PPC440). In general, because of the complexity of al-

gorithm and the fitness function, DE algorithm is executed either in the high-end

processor or in Graphic Processing Unit (GPU). In this case-study, the perfor-

mances (execution speed, power) of APU interface are compared with the Slave

unit (SU) interface. Furthermore, a system identification application is imple-

mented using the fixed/float DE IPs and their hardware acceleration is evaluated.

In the third case study, a hardware accelerator for H.264/Advanced video cod-

ing (AVC) is developed and interfaced with the PPC440 embedded processor using

the APU interface. The hardware acceleration due to the developed IP is evalu-

ated. The IPs of first, second and third case studies have achieved an acceleration

of (65x, 30x-230x and 6-7x) compared to its equivalent software implementation.

In summary, the work presented in this thesis concentrates on developing copro-

cessors for three signal processing applications of different complexity.

CHAPTER 1. INTRODUCTION 8

Thesis organization

The thesis is organized as follows: Chapter 2 describes the background of the

thesis that includes SoC design flow and concepts. Chapter 3 provides the first

case study of the work. It presents a detail analysis of denoising algorithm and

its SoC implementation. Chapter 4 presents the second case study of the work. It

presents the detail hardware implementation of Differential Evolution algorithm

with an application to IIR filter system identification. Chapter 5 presents the

third case study of the work. It presents the coprocessor architecture of H.264

video decoder and its SoC implementation. Chapter 6 presents the conclusions

and future scopes of the work.

Chapter 2

Background

This chapter presents an introduction to the System on Chip (SoC) design using

Field Programmable Gate Array (FPGA), SoC design flow along with the interface

details.

2.1 Field Programmable Gate Array (FPGA)

FPGAs are prefabricated programmable logic devices composed of lookup table

based programmable logic blocks connected by a programmable routing network

[15]. These devices are programmed on field as opposed to devices whose internal

functionality is fixed and hardwired by the manufacturer such as Application Spe-

cific Integrated Circuits (ASICs) and Application-Specific Standard Parts (ASSPs)

[16]. These devices have the resources such as Flip-Flops (FF), Random Access

Memory (RAM), Multiply and Accumulate (MAC), DSP48E and microprocessor

cores. Due to this, FPGAs are used in embedded as well as Digital Signal Process-

ing (DSP) applications that require massive parallelism, lower turnaround time

and low cost etc. The traditional approach for designing the hardware of a system

involves developing an Intellectual Property (IP) of the system/subsystems using

Hardware Description Languages (HDL) [1]. But many DSP applications require

hardware software codesign approach for meeting the real-time specifications. So

the alternate choice is to implement the design in the FPGA based SoC platform

where the hardware can be implemented in the hardwire logic and software can

be implemented in the soft/hard embedded processor core of the FPGA. In the

PSoC platform, processors, various standard peripherals and custom designed pe-

9

CHAPTER 2. BACKGROUND 10

ripherals are connected in a single chip. Design of embedded systems for signal

processing applications with IPs and on-chip processor cores is a challenging task.

A typical architecture of a FPGA is shown in Figure.2.1

Figure 2.1: FPGA architecture [1]

2.2 Hardware Software Co-design

In general, signal processing applications are developed using DSP processor which

has dedicated hardware blocks for certain computations like MAC, multipliers,

dividers etc. The disadvantage of using DSP processor is that it executes the

instructions in a sequential manner thus limits the speed of the design. So in

order to speed up the processing of an application, parallelization is needed. This

can be achieved using various ways like multi-threading of application, Graphic

Processing Unit (GPU), hardware design using FPGA etc. The main difference

between execution of hardware and software tasks is concurrency, which allows

the hardware to execute a task much faster than the software in a processor [17].

The designed hardware can be further accelerated by making use of the parallel

and pipelined architecture techniques. This would not be possible in a General

Purpose Processors (GPP) and DSP processors which performs computational

tasks in software by executing the application sequentially [2, 18]. The differ-

CHAPTER 2. BACKGROUND 11

System concept

Code-compile
debug

Executable system
source

specification

Profile
Application

Function profile
data

Meets
Requirements

Compile to
Target

FPGA executableRun/Debug on target

Target interface
platform

specification

System Constraints
-Performance
-Resources

-cost

Refine target system
(Add hardware

accelerator refine
code, etc)

Generate
-Hardware accelerators
-Software executable
-Interfaces
-FPGA bitstream

Figure 2.2: Hardware software codesign [2]

ence between these platforms are tabulated in Table.2.1. HW/SW codesign is a

popular approach being used to accelerate a computational intensive DSP appli-

cations. In codesign approach, most time consuming tasks/subtasks of the appli-

cation/algorithms are implemented in the hardware while the less computational

intense tasks/subtasks are implemented in the embedded processor. In codesign,

partitioning of the algorithm into software (SW) and hardware (HW) is a critical

task [19]. The partitioning of HW and SW is decided by the profiling results of the

application as shown in Figure.2.2. During the profiling, the computational intense

tasks/subtasks are identified. Subsequently these are designed and implemented

either in the hardwired logic or by using a dedicated coprocesser units [2, 20].

FPGA based embedded system design is still relatively new compared to standard

processors. So the software design tools are relatively immature and difficult to

debug the entire system [11, 21]. There are prominent issues like IP interface,

cross clock handling and memory management that imposes design bottlenecks

CHAPTER 2. BACKGROUND 12

in SoC design. So in order to resolve these things new design methodologies and

easier integration methods are needed.

Table 2.1: Comparison of Processor/DSP, FPGA, ASIC based solutions [6]

characteristic Processor/DSP FPGA ASIC
Programmability High High Low

Development cycle HW+SW HW+SW HW
Area efficiency Medium Low High

Power efficiency Medium Low High
Performance Low Medium High

2.3 Hardware accelerator

A hardware that accelerates the execution of a task in a separate unit other than

processor is referred as hardware accelerator [18, 22]. The accelerators can be

designed using ASIC or FPGA approach depending on the specification of appli-

cations. ASIC-based accelerators cannot be usually leveraged by a gained speedup

due to larger design development costs and longer development cycle [1]. More-

over, an accelerator designed for a specific application cannot be utilized for an-

other application. With the advent of SoC platform using FPGA, the situation

is changed. The hardware rigidity is lowered by re-programmability of FPGA

devices in SoC platform and it allows interfacing of designed hardware IPs with

the processors for desired DSP applications. The ability of on-demand FPGA

reconfiguration also enables the accelerator to adapt to the actual needs of an

application executed in the processor [1, 19]. Several issues need to be taken into

consideration while designing a SoC system. The important issues are processor

to accelerator interface, mutual communication and synchronization [12, 17]. All

these effects have crucial impact on the acceleration. The former issue comprises

of communication protocol and amount of data transfer. Selection of a proper

communication/interface scheme affects the quantity of the data transfer from

processor to coprocessor. The improper bus interface may result slowdown of

the accelerated system [18, 22]. Another issue is to synchronize the data transfer

between processor and hardware unit by handshaking, direct or interrupt mech-

anism. The selection of the particular synchronization system depends on the

CHAPTER 2. BACKGROUND 13

chosen communication granularity and scheduling of the algorithm. The copro-

cessors can be interfaced with the processors using three different techniques i)

System bus connected, ii) I/O connected, and iii) Instruction-pipeline connected

[12, 17].

System bus connected

In this approach accelerators are interfaced to the processor as a slave periph-

eral/slave unit(SU) using system bus i.e. Processor Local Bus (PLB) as shown in

Figure.2.4. The accelerator can transfer data and send commands to the proces-

sor through the system bus. Typically a single/multi data transactions, consumes

many processor cycles due to bus arbitration [12]. These kind of systems have two

major bottlenecks i.e. insufficient peripheral bus throughput and bus arbitration,

this leads to data transfer and synchronization overheads which in turn lowers the

execution speed.

I/O connected

In this approach, the accelerators are interfaced directly to a dedicated I/O port

of a processor. In order to reduce the bus overhead and arbitration, a dedicated

First-In-First-Out (FIFO) type of interface like Fast Simple Link (FSL) in Mi-

croblaze (MB) processor is used. These interfaces are typically clocked faster than

the processor bus [12, 23]. Often data and control are typically provided through

GET or PUT instructions. This enables the bus interface to have lower latency

and higher data rate compared to the system bus.

Instruction Pipeline connected

In this approach, the accelerators with desired computing core are interfaced di-

rectly to the processor. Being coupled to the instruction pipeline, instructions not

recognized by the CPU can be executed by the co-processor [12]. This type of

accelerators expose no communication overhead and offers quick synchronization

between the processor and coprocessor. The bottleneck is the implementation of

the acceleration unit itself. If the critical path of the whole system goes through

CHAPTER 2. BACKGROUND 14

the acceleration unit, then the whole processor will decrease its operational speed

[12, 18]. Recent FPGAs include processors like ARM, PowerPC family processors,

which utilize both specialized functional units and instruction set extensions for

interfacing an IP. The APU interface is capable of transferring higher data vol-

umes per second, approaching to the speed of Direct Memory Access (DMA) [1].

2.4 Related works

Broadly, there are three different methods (as mentioned above) being used for

developing the coprocessors to accelerate the execution speed of a computation in-

tense task. The related literature reports that for coprocessor design, the method-

ology remains same but tool environment, processors and bus interfaces are vendor

specific. In this work we have used instruction pipeline approach for developing

the coprocessor for all the three case studies. There are limited works reported in

the literature about the development of coprocessor for accelerating a specific task

[22, 24]. Xilinx has developed a coprocessor for Inverse Discrete Cosine Transform

(IDCT) algorithm of Motion Picture Expert Graphic (MPEG-2) video decoder

[23, 25] in a PowerPC405 and Microblaze (MB) processor based SoC platform.

Also several other algorithms like Finite Impulse Response (FIR) filter and cordic

algorithms are implemented in FPGA which helps to realize smaller DSP appli-

cations [26, 27]. Longest Prefix Match (LPM) algorithm is implemented as an IP

in SoC platform [28]. This is used to search IP addresses in a routing table and

to find a forwarding path for the incoming IP address.

Paolo Zicari et al., has developed a coprocessor for performing matrix prod-

uct accelerator in both MB and PowerPC405 based SoC in Virtex-II Pro with

all different peripherals interfaces. It is demonstrated that APU coprocessor ac-

celerated the design by 9x [29]. Xu Guo et al., developed a 64-bit floating point

mathematical operations like multiplication, addition and square roots functions

for a public-key crypto systems using Virtex-5 FPGA [30]. Nandy et al., developed

a reconfigurable high-performance low-power filter coprocessor for DSP applica-

tions. This has the option of reconfiguration to support a wide variety of filtering

computations [31]. Michalis et al., developed a coprocessor namely Flexible Com-

putational Components (FCC) that can realize any two-level template of primitive

operations of data path. The effectiveness of coprocessor is evaluated in several

CHAPTER 2. BACKGROUND 15

real-world DSP applications like Joint Picture Expert Group (JPEG) encoder,

Orthogonal Frequency Division Multiplexing (OFDM) transmitter, data compres-

sion. The reported overall speedups are in the range of (1.75 to 3.95)x, having

an average value of 2.72x [32]. Wassner et al., developed a coprocessor to accel-

erate the candidate operations of a video content analysis algorithm in Virtex-5

FPGA platform. Results indicated that with a relatively small degree of paral-

lelism, corresponding to modest hardware cost, the overall frame rate is increased

to a range of 18 and 105% depending on the processing and application param-

eters [33]. Mingas et al., developed a coprocessor of genetic algorithm for scan

matching simultaneous localization and mapping problem in autonomous robotic

application using Virtex-II Pro FPGA. The reported architecture has achieved an

acceleration of up to 14.83x compared to the equivalent software implementation

in PowerPC405 processor [34]. Vera et al., developed a wavelet coprocessor using

model based design technique with PowerPC405 and MB processors [35]. Elhossini

et al., developed a Least Mean Square (LMS) adaptive filter for audio signal pro-

cessing in SoC platform. This platform also uses on board AC97 audio codec in

Virtex-II FPGA and achieved speed up to 3.86x [36]. Bekker et al., developed

a FPGA based Fourier Transform Infrared (FTIR) spectrometer to measure the

Mars atmospheric composition using solar occultation from orbit, in which the

design is ported into the hardcore PowerPC processor of Virtex 5-FPGA. By en-

abling the Floating Point Unit (FPU) of the APU an acceleration of 4x is reported

[9, 37, 38]. Several other works for on board signal processing for space applications

have also reported the advantages of FPGA based SoC system [8, 39]. Fons et al.,

developed a FPGA based runtime reconfigurable coprocessor for computational

applications using dynamic partial reconfiguration approach and is validated by

executing several signal processing algorithms [40, 41, 42].

In present days complex applications need a set of tools with a certain degree of

abstraction where, only a description of the final implementation and their desired

behavior is described in C [43, 44]. Several software applications are accelerated

using impulseC, AUTOESL tools which converts C specification into HDL, later it

use as an accelerator in SoC platform. Several different DSP applications like FIR

filter, image texturing, edge detection encryption, Electro-Cardio-Graphy (ECG)

applications are also developed using the above tools [13, 45, 46, 47]. AUTOESL

tool is used for several complex DSP applications like H.264 decoder, FFT etc.,

[47]. These tools have an advantage of smaller design time frame but debugging

CHAPTER 2. BACKGROUND 16

and modifying the design is challenging and cost effective. So the literature survey

shows that developing coprocessor for different signal processing applications is a

quite demanding area of research. In particular accelerating them using FPGA

based SoC design is explored by a limited group of researchers.

2.5 Programmable System on Chip design

FPGA are no longer act as only glue logic resource in a complex hardware sys-

tem, because the modern FPGAs have processor units along with glue logic as

processing elements [1, 48]. This way traditional system on board design has been

replaced by SoC design. If the designer need to develop SoC in a reconfigurable

approach then FPGA device is used and the platform is named as “Programmable

System on Chip (PSoC)“. It is an integrated system with processor, peripherals,

memories, custom Intellectual Property (IP) components on a single Integrated

Circuit (IC) like FPGA [49]. With a provision of including operating system, such

as Linux, these systems begin to appear more like a desktop Personal Computer

(PC) in terms of functionality and capability on a single IC chip. The general

architecture of PSoC platform is given in Figure.2.4.

Y-chart scheme is the common approach for implementing a designed in SoC

platform [50, 51]. Firstly, the designer characterizes the target application (appli-

cations), and partition it to map the application onto the different architectural

components. Then different performance measures are evaluated. After satisfac-

tory performance figures are achieved the designer follows the architecture else the

architecture is reconfigured. This section presents the development of SoC system

using PowerPC440 processor in Virtex-5 FPGA development board using Xilinx

EDK. The procedure to implement a design in this platform is described below.

The PSoC platform can be designed using Xilinx platform studio (XPS) in

Xilinx EDK and SDK as shown in Figure.2.3. In has two different design steps

namely hardware (HW) and software (SW). These two steps run in parallel. In

HW, Base System Builder (BSB) wizard provides an efficient way to create the

FPGA based embedded system. The choice of the memory types, memory con-

trollers, peripherals, peripheral controllers, size and type of instruction and data

cache memories, and size of local memory, choice of processor, bus and periph-

eral clock frequency are configured in BSB [16]. The proposed FPGA based SoC

system incorporate a coprocessing unit interfaced to the PLB or APU as shown

CHAPTER 2. BACKGROUND 17

Processor
Customization
(PPC440,MB)

C/C++ Coding

Synthesis / Place &
Route

Processor Bit stream

Debug using
Chipscope pro tool

Simulation (optional)

Integration

System
Bitstream

Compiler / Linker

Object code

Debug using Gdb

Xilinx Platform studio
(XPS)

Software Development
Tool kit (SDK)

FPGA

Embedded Development Tool kit (EDK)

Data2BlockRam

Analyze signal
using processor buses

Software Debugging
Download

Figure 2.3: Hardware software codesign approach using embedded development
kit [3]

in Figure.2.4. On-chip memory and external memory are used for initializing the

processor program. The Universal Synchronous and Asynchronous Receive and

Transmit (UART) and Joint Test Action Group (JTAG) ports are used to monitor,

debug and download the bitstream on to the FPGA. The proposed custom/DSP

IP in SoC has design objectives of high-speed in terms of operating frequency and

reduced cost in terms of FPGA fabric resources. During simulation, synthesis

and compilation of the embedded processor system, an appropriate optimization

scheme must be selected to achieve the above design objectives [16]. The processor

internal timer along with interrupt is used for measuring the execution time of the

algorithm. In this thesis we considered a custom coprocessor designed specifically

to target the implementation of DSP algorithm in the design. This is more advan-

tages in applications like FOG denoising, DE system identification, H.264 video

decoding. The software SDK tool is used to debug the design. In this dissertation,

CHAPTER 2. BACKGROUND 18

PPC440 processor is used because it outperforms the MB processor in terms of

processing speed and hardware resource utilization [16, 52].

PowerPC440

Interrupt DDR
Clock

Generator

33MHz
Hw_Clk

100MHz(SPLB_Clk)

Timer

INTR

BRAM
Controller

BRAM

MCI

SLAVE
ACCELERATOR

CUSTOM
CORE

CUSTOM
CORE

F
C
B

IPIF

COPROCESSOR

Virtex5XT-1136

Figure 2.4: Basic SoC system

2.5.1 Embedded Processors

Embedded applications demand on-chip processor core in FPGA to develop single

chip solution. Two types of microprocessor cores that are embedded in the FPGA,

a) soft processor like Altera Nios II [53] or Xilinx MB [54] and b) hard processor

like IBM PowerPC 440/405 [55, 56] in Xilinx Virtex-5 FXT / Virtex-II Pro FPGA

family. These cores (soft or hard) help to reduce the footprint of the design, power,

cost and time to market.

2.5.2 Memory

The performance of SoC platform depends upon how well the memory is organized.

FPGA based SoC system is a memory mapped system in which each peripheral

is having some address. Memory attached to SoC system can be divided into in-

ternal, external and cache memories [16]. The basic primitive of internal memory

is Block RAM with 148 Kbytes for Virtex-5 FPGA. However this size changes

from FPGA to FPGA. Similarly, DDR2SDRAM of size 256Mbyte and 1Mbyte of

Static Random Access Memory (SRAM) are used as off-chip external memories.

CHAPTER 2. BACKGROUND 19

The external memory access time is high compared to on chip memory and SRAM.

These can be configured using Multi-Port Memory Controller (MPMC)/ Memory

Controller Interface (MCI) in SoC platform. The use of external memory degrades

the throughput of design. In the PSoC, if application program fits entirely within

the local memory, then the design is likely to achieve optimal memory perfor-

mance, although it is mostly likely that the embedded programs will exceed the

local memory capacity. The program/data memory usage in SoC can be manipu-

lated using the Linker Script of system. This can be mapped either into internal

memory such BRAM or external memory.

2.5.3 Peripherals

The objective of the peripheral is to communicate with the processor through dif-

ferent buses. Generally peripherals are classified into two types (a) generic and (b)

custom peripherals. Generic peripherals are available as a soft-core or hard-core

and are configured during the SoC design phase [57]. The hard-core peripherals are

implemented in silicon whereas soft/custom logic peripherals are implemented in

the fabric. Custom peripherals are developed by the designer according to the ap-

plication. It is often in soft logic form developed using HDL language. Some of the

examples of custom peripherals are IDCT [25], FFT [58], FIR [59] filter etc. These

can be interfaced using various bus interface techniques like SU and APU. In this

thesis AMADMKF, DE and H.264 IPs are developed as the part of the work. The

details of some of the main standard peripherals used in this work are given below.

Central Direct Memory Access Controller (CDMA)

Some peripherals of SoC might have Direct Memory Access (DMA) capability

to improve data bandwidth and performance. Other peripherals might rely on

a separate DMA engine to provide this improved data bandwidth between the

peripheral and memory. The direct memory access does not necessarily transfer

data from different locations of external memory. In fact, transfers between the

hardware core on-chip memory to off-chip memory and vice-versa. The central

DMA controller in SoC system includes both a master and a slave bus interface

[1, 4].

CHAPTER 2. BACKGROUND 20

Universal Synchronous and Asynchronous Receive and Trans-

mit (UART)

This peripheral is essentially a parallel-to-serial shift register. This is used in the

system for monitoring, debugging and transferring the input/output data between

the processor and monitor [1].

Digital Clock Manager (DCM)

Most systems have a single external clock that produces a fixed clock frequency

[4, 60]. However, in SoC different modules need to operate at different frequencies

such as processor and memory at 200 MHz and custom logic at 50MHz. A Digital

Clock Manager (DCM) or Phased Locked Loop (PLL) allows to generate different

clock periods from a single reference clock.

2.5.4 Bus interfaces

The processor(s), memory controller(s) and peripheral(s) are connected to the sys-

tem bus. The interface logic is specific to the particular bus. The bus interface

includes a bus arbiter, which controls access to the bus. More details of buses

interfaces are available in [4, 61]. In multiple bus design, the bus with the high-

est bandwidth is connected with the processor, memory controller, and UART [62].

Slave Unit (SU) interface

In SU interface, the IP/ custom peripherals are interfaced with the Processor Lo-

cal Bus (PLB). The custom peripherals are designed by making use of Intellectual

Peripheral Interface (IPIF). It provides optional services through Intellectual Pe-

ripheral Interconnect (IPIC) which includes Register, FIFO, DMA, software reset

and interrupt support. The user can design peripherals using these flexibilities.

The IPIF utilizes the register interface and it takes advantage of the centralized

address decoding [63]. There are two ways to connect the IP i.e. either as master

or slave peripherals [1, 4]. The master peripheral is initiating communication to

other peripheral like processor, whereas Slave Unit (SU) or slave peripherals fol-

lows the instructions of master peripheral. In this thesis we are concentrated on

CHAPTER 2. BACKGROUND 21

PLBV46 Slave Top

Slave
Attachment

Address
Cnt/BE

Generation

Address
Decode

Slave Reply

PLB Requests
and Qualifiers

SPLB_CLK

SPLB_RST
IPIC

Custom
Core

IP Status Reply

Rd/Wr Qualifiers

CS Bus
Burst

Rd_CE Bus

Wr_CE Bus

Wr Data Bus

Rd Data Bus

PLB Bus

Figure 2.5: Processor Local Bus register interface [4]

designing the system using slave peripherals and coprocessors.

A slave IP core needs in and out data buses, a few slave registers, read/write re-

quest and acknowledge signals. The IP is designed with register interface having

minimum 1 to maximum 4096 slave registers. Each register can have read/write

operation which can interface any inputs of custom IP cores such as Multiplier,

Adder, IDCT etc. The slave registers which are interfaced to the input and output

of IP core can read/write the write port as shown in Figure.2.5. The IP accepts in-

puts from the bus (Bus2IP data) depending on the number of slave registers. The

associated read/write qualifiers are Bus2IP RegRdCE and Bus2IP RegWrCE re-

spectively. The qualifiers becomes high during data read/write operation. For

reading, the IP may drive non-zero data to IP2Bus data whenever one of its

register-read is active and it must drive valid data during the cycle that it asserts its

acknowledgement. The output of IP core (32-bit), is connected to IP2Bus data by

its slave register [62]. The register interface, the Bus2IP RdReq and Bus2IP WrReq

signals convey redundant information, but may have utility in allowing the IP to

easily generate a one cycle acknowledgement, IP2Bus RdAck or IP2Bus WrAck,

by delaying the corresponding request signal by an appropriate amount of time.

So in this work these acknowledgement signals are not used to reduce the latency.

CHAPTER 2. BACKGROUND 22

Device Control Register (DCR) interface

The DCR interface supports the PPC440 embedded processor for control and sta-

tus accesses other peripherals. This interface is interlocked with control signals

such that it can be connected to peripheral units which can be clocked at dif-

ferent frequencies from the embedded processor. The DCR interface also allows

the PPC440 embedded processor to communicate with peripheral devices without

using the PLB interface [1].

Auxiliary Processor Unit (APU) interface

The PPC440 processor in Virtex-5 FPGAs has a fabric coprocessor bus (FCB)

(128 bit) through which custom peripherals are interfaced with the processor

using an APU controller. The custom peripheral is invoked using the PPC440

extended instruction set i.e. Load and Store. This approach provides the flexibil-

ity of interfacing a coprocessor with the instruction pipeline [12]. The examples

are floating-point unit or other custom/DSP IPs related to signal processing dot

product or matrix multiplication [30, 38]. This coprocessor can execute the desired

task concurrently with the PPC440 processors extended instructions. The APU

controller synchronize the clocks of processor and custom IP and they can run at

different frequencies. The APU controller decodes the processor instructions in

a pipelined manner resulting faster execution of overall instructions. There are

two major classes of Fabric Coprocessor Module (FCM) instructions, (a) storage

instructions and (b) non storage instruction. In this work, storage instructions

i.e. load and store are used. Non storage instructions includes floating point

arithmetic instructions and User Defined Instructions (UDIs) based on opcodes.

The APU controller can run at the same speed as the processor. The clock ratio

between the processor and APU controller must be an integer multiples of the

processor clock range from 1:1 to 16:1.

The key characteristics and features of the APU controller are listed below [4].

1. If FCM is pipelined, it can execute three instructions at a time that do not

return data to the processor. This provides a low communication overhead

in the instruction issue to the APU controller [4].

CHAPTER 2. BACKGROUND 23

M

S

APU Wrapper

Custom/
 DSP

 IP Core

PPC440

TO_APU_IP

FRM_IP_APU

128-Bit

128-Bit

32-Bit

OP_DATA_EN

OP_DATA_EOS

OP_DATA_RDY

APU_FCM_INSTRUCTION
APU_FCM_INST_VALID

FCM_APU_RESULT
FCM_APU_DONE

APU_FCM_FLUSH
APU_FCM_WRITE_BACK_OK
APU_FCM_LOAD_BYTEADDR

APU_FCM_INST
APU_FCM_INST_VALID
APU_FCM_LOAD_VALID
APU_FCM_DECODED
APU_FCM_LOAD_DATA

FCM_APU_RESULT
FCM_APU_DONE

OP_DATA

IP_DATA_EN

IP_DATA_EOS

32-Bit

IP_DATA_RDY

IP_DATA
APU_FCM_MEDIAN
APU_FCM_DECUDI
APU_FCM_DECUDI_VALID

FCM_APU_SLEEP_NOT_READY
FCM_APU_LOAD_WAIT
FCM_APU_RESULT_VALID

FCM_APU_SLEEP_NOT_READY
FCM_APU_LOAD_WAIT
FCM_APU_RESULT_VALID

APU_FCM_LOAD_VALID
APU_FCM_DECODED
APU_FCM_LOAD_DATA

F
C
B

FCM

Figure 2.6: APU interface system for PPC440 processor

2. It decodes FCM load and store instructions with byte, halfword, word, dou-

ble word, and quadword size data transfer.

3. It decodes FPU instructions as well and user defined instructions by using

16 UDIs by configuration registers using full primary and extended opcode

[4].

The APU coprocessor using the PPC440 processor for custom DSP application

IP (i.e. either denoised core or DE core) is shown in Figure.2.6. It has mainly three

modules, i) PowerPC processor, ii) APU wrapper (iii) custom DSP IP core. The

objective of the processor is to send and receive the data to and from the APU.

The objective of APU wrapper is to interface the IP core with the processor,

whereas the objective of the IP core is to process the signal. The APU wrapper

contains two different modules namely IP APU and APU IP. The APU IP mod-

ule receives data from the processor and sends it to custom DSP IP whereas the

IP APU module receives the IP data from the custom DSP IP and sends it back

to the processor (PPC440). The APU IP receives 128 bit signal, but the IP has

32 bit width. The IP receives a full set of data in 4 clock cycles. Similarly the

CHAPTER 2. BACKGROUND 24

IP APU module receives 128 bit of data from the IP in 4 clock cycles. A Finite

State Machine (FSM) with 5 states, i.e. load, load valid, store, store valid and idle

states control the data between the processor, IP APU and APU IP. The APU

uses some of the load/store input lines like APU FCM INSTRUCTION and

APU FCM INSTRUCTION V ALID etc., of the PowerPC processor for the

entire interface [4]. The signalsAPU FCM MENDIAN , APU FCM DECUDI

and APU FCM DECUDI V ALID are not used in this design. The APU wrap-

per of IP core using six control signals OP DATA EN ,OP DATA RDY ,

OP DATA EOS, IP DATA EN , IP DATA RDY , IP DATA EOS [49].

2.5.5 Related tools

The SoC development cycle has two different platforms a) Software development

b) Hardware development.

Software development platform

MATLAB and C programming language are used for algorithm development and

validation. Ecllipse platform is used to verify H.264 decoder (software). Xilinx

Software Development Kit (SDK) is used for profiling the algorithm in PPC440/MB

processors.

Hardware development platform

The hardware development cycle uses various tools for HDL coding, simulation,

synthesis, debugging. Aldec Rivera and Mentor graphics Modelsim simulation

tools are used for coding and simulation. For hardware and SoC development

Xilinx Integrated Development Environment (IDE) with Integrated Software En-

vironment (ISE) [64] and Embedded Development Kit (EDK) [3] are used. EDK

tool is used for building the SoC and generating custom peripherals [65].

Chapter 3

Coprocessor for Fiber Optic

Gyroscope (FOG) signal

denoising

KF AMA

PPC440 RS-232

AMADMKF
APU

FCB

PLB

Virtex5FXT-1136

Static Signal

Sensor Raw Signal Filtering
algorithms

De-noised
signal

FPGA based Embedded system for Denoising Fiber Optic Gyro Signal

Static Signal

Dynamic SignalDynamic Signal

Fiber Optic Gyroscope

25

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 26

This chapter proposes a denoising algorithm for Fiber Optic Gyroscope (FOG)

signal. The performance of this algorithm is compared with existing algorithms

such as conventional Kalman Filter (KF), Discrete Wavelet Transform (DWT)

with respect to Allan Variance analysis and Signal-to-Noise Ratio (SNR). Further

a hardware Intellectual Property (IP) of the proposed algorithm is developed and

its performance is evaluated. Finally a System on Chip (SoC) is built using the

IP and hardware acceleration due to this configuration is reported.

3.1 Introduction

There is an increasing demand for accurate, yet low-cost and highly reliable guid-

ance, control, and navigation systems for measuring the direction and altitude of

an object. Gyroscope is the core component for providing this information. Al-

though different type of gyroscopes are available, Fiber Optic Gyroscope (FOG) is

a proven technology for measuring angular velocity of an object. It has the advan-

tages of low reaction time, wide dynamic range, high accuracy and reliability [66].

The basic operational principle of FOG is that the optical path difference induced

by counter propagating beams in a rotating reference frame is proportional to the

absolute rotation rate (Sagnac effect) [67]. When the system is at rest (static

condition), the counter propagating beams traverse identical paths resulting to

zero phase difference between them. In contrary, when the system rotates with

an angular velocity Ω (dynamic condition), the path difference between the two

beams will result in a phase difference which measures the rotation rate of the

object. Since the rotation angle is evaluated by integrating the measured rotation

rate over a period of time, any error in measuring the rotation rate will result

error in rotating angle. This error results in long-term offset/ bias drift of FOG

[66]. Hence prior to denoise the signal, understanding behavior of FOG signal is

necessary.

The measured FOG signal is said to be static when there is no rotation rate or

the gyro is in static condition. Similarly it is said to be dynamic when it rotates

with a rate in Deg/sec or Deg/hr. The sensitivity of measured angular velocity

is more important in the moving environment rather than in the static environ-

ment. The denoising of dynamic data is comparatively more complex than the

static data as the changes in rotation rates make it more difficult to simultane-

ously denoise the signal and accurately track the rotation rates. Some times the

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 27

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time(Sec)

D
eg

/S
ec

(a) FOG raw signal in static condition

0 1000 2000 3000 4000 5000 6000 7000

−200

−150

−100

−50

0

50

100

150

200

Time(Sec)

D
eg

/S
ec

(b) FOG raw signal in dynamic condition

Figure 3.1: FOG raw signals in static and dynamic condition

measured signal is noisy during the transitions. FOG signal in dynamic environ-

ment, can be approximated as a combination of signals oscillating about a mean

value and signals transitioning between two mean values [68]. In this work the

transition region is considered as the discontinuity region and remaining region

is considered as stationary region. When the gyroscope is in stationary region,

the measured signal is noisy and when the gyro changes its rotation rate i.e. in

dynamic condition, the measured signal sees a sudden jump or transition in the

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 28

signal. Figure.3.1a and Figure.3.1b show the static and dynamic signals of a FOG.

In literature different signal processing algorithms such as Discrete Wavelet

Transform (DWT) [69, 70, 71] and Kalman Filter (KF) with properly tuned gain

[72, 73], Multiple Model Kalman Filter (MMKF) [74, 75, 76] are being used to de-

noise the FOG signal in static condition satisfactorily. However these algorithms

fail to denoise the signal in dynamic condition. This is because neither the DWT

nor the KF algorithm can capture the unpredictable abrupt changes of dynamic

signal. Although an appreciable amount of literature is available for denoising

gyroscope signals using KF, the problem of adjusting KF parameters for the real-

time filtering application is still unsolved and tuning of these parameters varies

from sensor to sensor, even from axis to axis. Different approaches such as op-

timization approach [77] and Adaptive Kalman Filter (AKF) [78] were used for

denoising, but still improvements are required for denoising dynamic signal. In

Kownacki et al., KF was applied to dynamic signal with a test step signal using

optimized KF parameters [77]. These parameters were evaluated in advance and

used for denoising the whole signal. Denoising algorithms like AKF, MMKF etc.,

had applied successfully for denoising the dynamic data of Global Positioning Sys-

tem (GPS) [79, 80], but these algorithms failed to denoise FOG dynamic signal.

So development of an efficient denoising algorithm is necessary to improve the

accuracy and performance of FOG.

Both manufacturers and users are keen to know about the source of the noise and

the amount of noise present in the signal. Noise quantification helps the manufac-

turer to minimize the noise during the manufacturing process. Complementary to

this, the user can also improve the navigation solution by making use of different

denoising algorithms. The performance of the denoising algorithms are character-

ized by quantifying the random noises in the denoised signal using Allan Variance

analysis. This analysis helps to detect the FOG signal random drift [66] as Quan-

tization error (Q), Angle random walk error (N), Bias instability error (B), Rate

random walk error (K) and Drift rate ramp (R) [81]. Recently, FPGA based Real-

time embedded system is developed for vehicular navigation system, consisting of

a gyroscope and an odometer or wheel encoders, along with a GPS receiver and

KF [11]. In order to have on-board denoising of the FOG signal, the denoising

algorithm need to be implemented in the hardware and integrated to the FOG

sensor board. This chapter presents a new denoising algorithm namely, Adaptive

Moving Average Dual Mode Kalman Filter (AMADMKF) for denoising FOG sig-

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 29

nal in both static and dynamic environment. This is a hybrid of the standard

Adaptive Moving Average (AMA) and Kalman Filter (KF) algorithms. Now-a-

days, SoC design solution replaces system on the board design concept [8]. So,

apart from proposing an algorithm for denoisng the FOG signal under static and

dynamic environment, we also implemented and tested the proposed algorithm in

a FPGA based embedded system platform.

3.2 Denoising algorithms

This section presents different denoising algorithms such as Discrete Wavelet

Transform (DWT), Kalman Filter (KF) and proposed algorithm for denoising

FOG signal.

3.2.1 Discrete Wavelet Transform (DWT)

During the last decade Wavelet transform became a popular tool for signal pro-

cessing applications. Most popularly, it is being applied for signal compression,

feature extraction and signal denoising [82]. This work focus on the use of Discrete

Wavelet Transform (DWT) for denoising FOG. Wavelet transform can be classi-

fied into two types i) Continues Wavelet Transform (CWT). ii) Discrete Wavelet

Transform (DWT). The DWT of the signal can be computed using decomposition

algorithm [83, 84]. In this algorithm at each level of decomposition, the signal

is passed through a half band low pass and high pass filters, followed by down

sampling by 2. The low frequency (approximated) coefficients contain rotation

rate, whereas high frequency (detail) coefficients have the information about rota-

tion rate with noise. Noise from high frequency coefficients are removed by using

thresholding the detail coefficients. For reconstruction the signal, reverse process

of decomposition is performed. The FOG output signal can be expressed as

yn = xn + en (3.1)

where xn, en are the true rotation rate and random noise respectively.

For denoising yn the algorithmic steps is explained below [85]

1. Select a wavelet basis (Bi-orthogonal or orthogonal). Compute the approx-

imation and detail wavelet coefficients of the signal at each decomposition

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 30

level. Let dj, j = 1, 2 . . . J are the detail coefficients at jth decomposition

level, where J is the maximum level of decomposition.

2. Compute the noise variance σ2
j at each level j =1, 2..J .

σ2
j = median(dj)/0.6745 (3.2)

3. Compute threshold Tj at each level j as

Tj = σj
√

2ln2j (3.3)

4. Select one of the level dependent threshold either (soft or hard). Apply the

selected threshold to detail coefficients

dSj =

sgn(dj)(|dj| − Tj), if dj ≥ Tj

0, if dj < Tj
(3.4)

dHj =

dj, if dj ≥ Tj

0, if dj < Tj
(3.5)

The selection of wavelet depends upon nature of the signal of interest and also

its correlation with the signal. For selecting the level of decomposition the mean

value of detail wavelet coefficient at each level is computed. Since, white noise has

zero mean, maximum level of decomposition is same as the level up to which mean

value of detail coefficient is zero. The choice of threshold selection rule also plays

an important role in denoising the signal. There are four threshold selection rules,

namely Rigrsure, Minimaxi, Sqtwolog and Heursure [82]. In this work, Sqtwolog

and hard threshold are used because i) it has shown better denoising result than

others and ii) it is easier to implement in the hardware.

3.2.2 Kalman Filter (KF)

Kalman filter uses state space representation of the input and various other pa-

rameters. Process noise covariance matrix (Qk) and measurement noise covariance

matrix (Rk) are the two parameters that effect the output of KF. There are sev-

eral variants of the KF based on the way the values of Qk and Rk are estimated

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 31

[86]. In the basic KF fixed values of Qk and Rk are considered to filter the sig-

nal by assuming that the process noise and measurement noise characteristics are

statistically known. The denoising process using KF has two stages [86]

1. The first stage predicts the current state and the error covariance based on

the previous state estimation.

2. The second stage corrects the previous predicted values using the present

measured value.

These stages are represented as

x̂−k = Ax̂k−1 +Buk (3.6)

P−k = APk−1A
T +Qk (3.7)

Kk = P−k H
T (HP−k H

T +Rk)−1 (3.8)

x̂k = x̂−k +Kk(zk −Hx̂−k) (3.9)

Pk = (I −KkH)P−k (3.10)

where

xk is the state vector at time k,

uk is the optional control input at time k,

Qk is the process noise at time k,

Rk is the measurement noise at time k,

zk is the measurement taken at time k,

Pk represents error covariance matrix at time k,

A, B and H are state space representation matrices.

Qk and Rk are discrete white noises having gaussian distribution with zero

mean and covariances respectively.

The Kalman Gain (Kk) is the dominant parameter that affects the filter per-

formance and is calculated based on the different KF parameters. A detailed

description of the standard KF is given in [86]. For a fixed set of KF parameters,

the Kalman gain and the error covariance converge to almost a constant value.

Hence, the KF can be characterized by the Kalman gain alone and the output can

be written as [86]

x̂k = x̂−k +Kk(zk − x̂−k) (3.11)

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 32

3.2.2.1 Adjusting KF parameters

Start the FOG

Collect the offline dynamic
data

Use Kalman gains k1 and
k2 in AMADMKF

Use Kalman filter for
denoising for static

region using sweeping
Q and R

Use Kalman filter for
denoising for dynamic
region using sweeping

Q and R

Implementation of AMADMKF in FPGA

KF Gain k1

Test
AMADMKF

Online SoC implementation of AMADMKF in
FPGA

stop

KF Gain k2

Figure 3.2: Adjusting KF parameters in off-line mode of the AMADMKF

The Kalman gain (Kk) depends on the measurement noise covariance (Rk),

process noise covariance (Qk), and error covariance (Pk) matrices of the filter. The

estimation of these parameters for real-time filtering is still unsolved [77]. These

parameters values depend on the FOG dynamics which are not explicitly known a

priori. The effective denoising can be achieved by appropriate initialization of Rk,

Qk and Pk [87, 88]. For denoising the dynamic noisy signal, there exits a trade-off

between quality of denoising and following the trend of the signal. This depends

on the proper value of Qk/Rk. For the dual mode KF, Qk/Rk is selected such that

KF has a choice to choose the optimum value of Qk/Rk for effective denoising

and following the trend of the signal independently [89]. Since the algorithm has

two variables (Rk, Qk), it is not difficult to find the optimum values for the above

desired conditions. These can be obtained off-line by sweeping the range of both

the variables as shown in Figure.3.3a. The minima can be easily obtained from

the sweep plot to fix the value of Qk/Rk.

For static condition, KF gain k1 is calculated for the obtained values of Qk

and Rk using the sweep plot. The output of KF stabilizes after processing certain

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 33

number of samples as shown in Figure.3.3a and the denoising effect has shown in

Figure.3.3b. This sample delay does not affect much in static condition, whereas

in the dynamic condition, this delay is not tolerable. The KF parameters not only

impacts the noise level of output signal, but also on the settling time of the KF.

It is observed from Figure.3.3a that the settling time decreases with increase of

KF gain and also decreases the denoising effect as shown in Figure.3.3b.

0 100 200 300 400 500 600 700
−2

0

2

4

6

8

10

12

Time

D
eg

/S
ec

Noisy FOG signal
KF Gain 0.2
KF Gain 0.9
KF Gain 0.02
KF Gain 0.001

(a) Choosing KF gain parameters in transition region

5300 5350 5400 5450 5500 5550 5600

9.85

9.9

9.95

10

10.05

10.1

10.15

Time (Sec)

D
eg

/S
ec

Noisy FOG signal

KF Gain =0.001

KF Gain =0.01
KF Gain =0.1

(b) Choosing KF gain parameters in stationary region

Figure 3.3: Selection of KF gain in different conditions for dynamic FOG signal

This analysis shows that one KF parameter (Kalman gain) does not follow

the signal trend but denoises the signal effectively and vice-versa. This is shown

in Figure.3.3a and Figure.3.3b. These two results have different sets of Qk and

Rk values with the Kalman gains as k1 and k2. These values vary from FOG to

FOG. So the analysis of KF algorithm for a particular FOG is an important step

of the algorithm. In literature Dah-jing et al., evaluated the KF parameters using

swarm intelligence technique [90], but in order to maintain a feasible solution for

the hardware implementation, the gain parameters are estimated off-line as shown

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 34

in Figure.3.2.

3.3 Proposed Hybrid Kalman Filter (AMADMKF)

AMADMKF is a hybrid KF technique based on the Adaptive Moving Average

(AMA) and Kalman Filter(KF). In this technique the moving average filter length

is not constant, rather it adapts according to input signal. A long term moving

average filter can denoise the signal effectively but it fails to denoise the signal if

it has multiple discontinuities. To avoid this problem, adaptive filters have been

used in which the length of moving average adapts according to rate of change in

signal. The adaptive moving average technique is used to detect discontinuities

in the signal [91]. The discontinuity locations are obtained using noise variance

of the signal. The AMADMKF algorithm has two KFs with different gains which

are obtained from off-line mode in previous subsection. One gain k1 is used when

the FOG is on stationary and other k2 is used when the FOG changes its rotation

rate. The implementation steps of AMADMKF algorithm is explained below

Implementation steps

1. Consider N = 4096 number of samples as one frame of the signal.

2. A q point simple moving average filter is applied to suppress the noise in the

signal. The denoised output is

yn =
1

2q + 1

q∑
j=−q

xn+j (3.12)

3. The noise is further reduced by applying an iterative adaptive moving aver-

age filter, in which the size of window varies adaptively. By using this filter

the output signal Yn is

Yn =
1

qh(n) + qt(n)

qh(n)∑
i=−qt(n)

yn+i (3.13)

where

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 35

qh(n) =

q, if D′(n) < 0

f(D(n))q, if D′(t) ≥ 0
(3.14)

qt(n) =

q, if D′(n) > 0

f(D(n))q, if D′(n) ≤ 0
(3.15)

f(D(n)) = 1− D(n)

max(D(n))
(3.16)

D(n) = |y(n+ q)− y(n− q)| (3.17)

D′(n) = D(n+ 1)−D(n) (3.18)

4. Iteratively obtain (z times, in this work we have considered z=3) the values

of qh and qt by giving the adaptive filter output as the input. Select the

values of qh and qt that correspond to the final iteration.

5. For obtaining the discontinuity location, the sample variance is compared

with a threshold (λ). The variances of the samples starting from (2q + 1)th

sample to (N − 2q − 1)th sample is

σ̂2
n =

∑qh
i=qt
{Yi − Y n}2

qt + qh
(3.19)

6. Compute the threshold (λ) from as [91]

λ =
1

η
∗ (min(σ̂2

2q+1, σ̂
2
2q+2, σ̂

2
2q+3,, σ̂

2
N−2q−1))

2/3 (3.20)

where η is a constant and 0.1 < η < 0.5. η also can be determined as 95%

upper tail of exponential distribution with expected value as mean of sample

variances in the current frame [89].

7. Obtain all the discontinuity locations τi so that

τi = n|σ̂2
n > λ (3.21)

where n = 2q + 1, 2q + 2,, N − 2q − 1.

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 36

8. If the number of discontinuity locations obtained is less than one, it implies

that there is no discontinuity in the present frame of the signal. Hence,

denoise the samples using KF with gain k1. When the denoising of current

frame is complete, skip all the steps below.

9. Otherwise find the consecutive discontinuity locations .

10. Denoise the samples from starting location of first discontinuity region until

the end location of the last discontinuity region, using KF with gain k2.

Rest of the samples are considered to be present in non-discontinuity region

and denoise them using KF gain k1.

11. Iterate all the above procedural steps for each frame.

The discontinuity detection is illustrated in Figure.3.4

0 2000 4000 6000 8000 10000 12000
−300

−200

−100

0

100

200

300

Time (Sec)

 D
eg

/s
ec

0 2000 4000 6000 8000 10000 12000
0

10

20

30

40

50

60

Time (Sec)

Sa
m

pl
e

va
ria

nc
es

Figure 3.4: Discontinuity detection using AMADMKF algorithm

3.4 Experimental setup

In order to validate the performance of the algorithms, several test signals are

acquired from two different closed loop FOG’s (one is three axis (x, y, z) FOG and

other is single axis FOG) in both static and dynamic conditions. The single axis

FOG is shown in Figure.3.5. It uses a 25 volts DC-DC converter as power supply

for FOG. Also it sends data through serial data RS422 - RS232 converter to PC

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 37

at baud rate of 115200. The data obtained from three different single-axis FOG’s

are labeled as set 1, set 2, and set 3. These data are collected in static condition

for 12.25 hr duration in a rate table with sampling frequency of 400 Hz at room

temperature. The dynamic condition test data are collected from three single axis

gyros for 1.25 hr duration with different rotation rate/hr (±2°±6° and ±10°) at

room temperature. These are labeled as set 4, set 5, and set 6.

Static data sets (x-axis, y-axis, z-axis) are also collected from the three axis FOG

(static condition) for 4.5 hours with a sampling frequency of 200 Hz at room tem-

perature (20°). The dynamic condition test data are collected from the same three

axis FOG for 2 hours duration with different rates of rotation ±200 to ±1 Deg/sec

at different temperatures i.e., 0°, 20°, 40°and 60°C. The proposed algorithm is ap-

plied to all the three axis signals but only y-axis results are presented. Similarly,

only x-axis dynamic FOG signal is presented.

Figure 3.5: Single axis FOG

3.5 Simulation results

This section presents simulation parameters and results of each of the denoising al-

gorithms that are considered for comparison as discussed in 3.2. The performance

of DWT, KF, and AMADMKF algorithms are compared based on the Standard

Deviation (SD) and relative Signal to Noise Ratio (SNR) [92].

SNR = 10log

(
σ2
before

σ2
after

)
(3.22)

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 38

where σ2
before and σ2

after refers to the variance of the signal before and after

denoising respectively.

The performance of the denoised algorithm for dynamic signal is expressed

in terms of bias drift and response rate [77]. Allan Variance noise analysis is

carried out before and after denoising the static signal. Allan variance analysis

is commonly used time domain analysis technique to quantify different random

errors like (Quantization noise (QZ), Angle Random Walk (N), Bias Instability

(B), Rate Random walk (K), Drift Rate Ramp (R)) present in the FOG. More

details about this can be found in [81].

For DWT algorithm, db-2 wavelet is chosen as the mother wavelet with the

7-level of decomposition. Different wavelet bases have been tested and it is found

that db-2 is the best suitable one for this application. The threshold method is

selected as soft with Sqt-log mode. For AMADMKF algorithm, 4096 data samples

are considered as one frame, whereas 1024 samples are considered as a frame for

DWT algorithm and KF denoised the signal sample by sample. These frames have

different lengths, and chosen by conducting many experiments [68, 93]. For KF

algorithm the gains are the ratio between Qk and Rk. The Kalman gain increases

as the ratio Qk/Rk increases. In this work, Kalman gains k1 and k2 are chosen as

0.2 and 0.001 respectively.

5 10 15 20 25

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (Sec)

D
eg

/S
ec

Noisy FOG signal
KF−Gain k2
DWT
KF−Gain k1
AMADMKF

(a) set 1 data denoised signal

5 10 15 20 25

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (Sec)

D
eg

/S
ec

Noisy FOG signal
KF−Gain k2
DWT
KF−Gain k1
AMADMKF

(b) set 3 data denoised signal

Figure 3.6: Comparison of denoised results of set 1 and set 3 data under static
condition

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 39

590 595 600 605 610

5.8

6

6.2

6.4

6.6

6.8

7

Time(Sec)

D
eg

/S
ec

Noisy FOG signal
KF Gain k2
KF Gain k1
DWT
AMADMKF

(a) set 4 data denoised signal
at single transition

1650 1700 1750 1800 1850 1900 1950 2000 2050 2100

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Time(Sec)

D
eg

/S
ec

Noisy FOG signal
KF Gain k2
KF Gain k1
DWT
AMADMKF

(b) set 4 data denoised signal
at multiple transition

Figure 3.7: Comparison of denoised results of of set 4 data under dynamic condi-
tion

The DWT, KF and AMADMKF algorithms are applied to denoise the data

set 1, set 2, and set 3 of single-axis FOG. The denoised signal for set 1 and set 2

are plotted in Figure.3.6a and Figure.3.6b respectively. The results are plotted for

25 seconds to visualize the denoising effect clearly. However the simulations are

carried out for 12.25 hours data. From these figures, it is observed that the DWT

algorithm is not able to denoise the signal efficiently, whereas KF and AMADMKF

algorithms give competitive performance. This argument is also supported by the

improvements observed in the standard deviation and SNR tabulated in Table.3.1

and Table.3.2. Although KF gives quite competitive results with AMADMKF, it

fails to denoise the FOG signal under dynamic environment i.e. for data set 4, set

5, and set 6. The denoised dynamic signals of set 4 are shown in Figure.3.7a and

Figure.3.7b respectively. The plotted figures have been taken at different parts of

the denoised signals for observing the results more clearly. However, the complete

denoised signal of set 4 and y-axis are shown in Figure.3.8a and Figure.3.8b re-

spectively.

The three-axis FOG signals under dynamic conditions are also denoised using

the DWT, KF and proposed AMADMKF algorithm. Although the simulations

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 40

500 1000 1500 2000 2500 3000 3500 4000 4500
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time(Sec)

D
eg

/S
ec

Noisy FOG signal
KF Gain k2
KF Gain k1
DWT
AMADMKF

(a) set 4 data full denoised signal under dynamic condition

0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 104

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time(Sec)

D
eg

/S
ec

Noisy FOG signal
DWT
KF Gain k2
KF Gain k1
AMADMKF

(b) y-axis data full denoised signal under static condition

Figure 3.8: Comparison of denoised results of set 4 and y-axis data under dynamic
and static conditions

are carried out for complete 1.5hrs data set, for clear observation, 20 seconds

of data showing one and multiple transition regions are plotted in Figure.3.9a

and Figure.3.9b respectively. In the data set, a transition occurs whenever there

is a change in the rotation rate of the object. Figure.3.10a shows the effect of

denoising the signal in a static region between two successive transitions whereas

and Figure.3.10b shows the complete denoised signal. From the Figures.3.6 to

Figure.3.10, the following conclusions have been drawn

1. The DWT algorithm exhibits delay and noisy spikes for initial samples of the

signal. This algorithm neither followed the trend of the signal nor denoised

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 41

3234 3236 3238 3240 3242 3244 3246 3248 3250 3252 3254

−1

−0.5

0

0.5

1

Time(Sec)

D
eg

/S
ec

Noisy FOG signal
KF Gain k1
KF Gain k2
DWT
AMADMKF

(a) x-axis denoised signal
at single transition

2600 2700 2800 2900 3000 3100 3200

−12

−10

−8

−6

−4

−2

0

Time(Sec)

D
eg

/S
ec

Noisy FOG signal
KF Gain k1
KF Gain k2
DWT
AMADMKF

(b) x-axis denoised signal
at multiple transition

Figure 3.9: Comparison of denoised results of x-axis data under dynamic condition

3275 3280 3285 3290 3295 3300

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Time(Sec)

D
eg

/S
ec

Noisy FOG signal
KF Gain k1
KF Gain k2
DWT
AMADMKF

(a) x-axis denoised signal
under static condition

1000 2000 3000 4000 5000 6000 7000
−200

−150

−100

−50

0

50

100

150

200

Time(Sec)

D
eg

/S
ec

Noisy FOG signal
KF Gain k1
KF Gain k2
DWT
AMADMKF

(b) x-axis denoised signal
under dynamic condition

Figure 3.10: Comparison of denoised results of x-axis data in static and dynamic
condition

the signal effectively.

2. The KF-gain k1 followed the trend of the signal but could not denoises

effectively.

3. The KF-gain k2 algorithm denoised the signal effectively in between the

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 42

successive transitions and also near the transition regions. However it did

not follow the trend of the signal and also it has more settling time.

4. The AMADMKF algorithm denoised the signal in both regions effectively

and efficiently. It also followed trend of the signal as shown in in Figure.3.9a

and Figure.3.9b.

The above figures reveal that DWT, KF gain k2 algorithm is not able to denoise

the signal efficiently whereas KF gain k1 and AMADMKF algorithms are giving

competitive performance in static condition. This argument is also supported by

the improvements observed in the bias drift and SNR tabulated in Table.3.1 and

Table.3.2. The results demonstrated that AMADMKF algorithm reduces the bias

drift of the signal by an order of 100 and improves the SNR approximately by 80

dB.

Table 3.1: Comparison of the standard deviation of denoising algorithms

Algorithm set 1 (Deg/sec) set 2 (Deg/sec) set 3 (Deg/sec)
Raw Signal 161x10−4 184x10−4 205x10−4

DWT 23x10−4 24x10−4 20x10−4

KF gain k1 1.8624x10−4 1.8510x10−4 1.9025x10−4

KF gain k2 37x10−4 39x10−4 39x10−4

AMADMKF 2.7784x10−4 2.4511x10−4 2.2559x10−4

Table 3.2: Comparison of the SNR of denoising algorithms

Algorthim set 1 (SNR in dB) set 2 (SNR in dB) set 3 (SNR in dB)
DWT 39.0252 40.9616 46.4925
KF gain k1 89.2074 91.9847 93.3793
KF gain k2 29.5478 30.9326 32.9927
AMADMKF 81.0272 86.3687 90.1595

We have also analyzed the performance of denoising algorithms using Allan

Variance analysis. The Allan variance is applied to long hour data sets only,

whereas dynamic environment data changes its rotation more often, so we cannot

apply this analysis to dynamic set data. We carried out Allan Variance analysis

on each set of static signals before and after denoising. The Allan Variance plots

of set 1 and set 3 are plotted in Figure.3.11. Figure.3.11a and Figure.3.11b shows

that the AMADMKF and KF gain k1 has lower slopes as compared to DWT, KF

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 43

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Time (Sec)

D
eg

/S
ec

Before Denoising
DWT
Kalman Gain k1
Kalman Gain k2
AMADMKF

(a) Allan Variance analysis of set 1 data

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Time (Sec)

D
eg

/S
ec

Before Denoising
DWT
Kalman Gain k1
Kalman Gain k2
AMADMKF

(b) Allan Variance analysis of set 3 data

Figure 3.11: Comparison of Allan Variance analysis before and after denoising of
single axis static data

Table 3.3: Allan Variance analysis of set 1 data

Factor Raw Data DWT KF gain k1 KF gain k2 AMADMKF
Q 1044x10−4 51x10−4 16x10−4 16x10−4 5.7256x10−4

N 20x10−4 0.93556x10−4 0.295x10−4 0.47486x10−4 0.10763x10−4

Bs 861x10−4 83x10−4 27x10−4 38x10−4 9.6754X10−4

K 14.0307 0.5648 0.1839 0.2559 0.0672
R 645.437 27.1835 9.0103 12.2006 3.2853

Table 3.4: Allan Variance analysis of set 3 data

Factor Raw Data DWT KF gain k1 KF gain k2 AMADMKF
Q 1633x10−4 51x10−4 61x10−4 32x10−4 5.3396x10−4

N 26x10−4 0.94815x10−4 0.29500x10−4 0.47486x10−4 0.10763x10−4

Bs 861x10−4 83x10−4 27x10−4 38x10−4 9.6754X10−4

K 14.0307 0.5648 0.1839 0.2559 0.0672
R 645.437 27.1835 9.0103 12.2006 3.2853

gain k2. The random noise coefficients are quantified from the slopes of the Allan

Variance plot and the values are tabulated in Table.3.3 and Table.3.4. From these

tables it is evident that there is a significant reduction in the noise coefficients in

case of AMADMKF algorithm as compared to DWT and KF gain k2, whereas

it gives nominal improvement as compared to KF gain k1. The noise coefficients

like rate random walk, angle random walk etc., are reduced after denoising by

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 44

Table 3.5: Bias drift for dynamic condition of x-axis data at (20°)

Rotation(Deg/(sec)) Input DWT KF gain k1 KF gain k2 AMADMKF
-200 0.07903444 0.03503364 0.03741309 0.02874328 0.00190266
-175 0.06971800 0.01913449 0.00444798 0.02813906 0.00444798
-150 0.08232674 0.01402021 0.02050005 0.03304942 0.00135209
-125 0.08772601 0.03435027 0.00120231 0.03732033 0.00120231
-100 0.08254453 0.02181158 0.03925280 0.03117872 0.00114857
-75 0.07587522 0.04893878 0.02945189 0.02838094 0.00142887
-50 0.07272912 0.04633337 0.05730649 0.02652248 0.00217494
-25 0.16273886 0.67616173 0.22591008 0.03387397 0.00724240
-10 1.18274250 0.16234799 1.35868718 0.36400719 0.02185515
-5 0.52355471 0.06665217 0.41727810 0.27739167 0.00510942
0 0.09825683 0.01846334 0.34440835 0.06603170 0.00277341
5 0.36446447 0.57405045 0.74097886 0.35384390 0.36799868
10 0.10345610 0.04078017 0.14994349 0.06719986 0.00389824
25 0.52383367 0.26465033 0.36765599 0.27679807 0.01093359
50 1.14341674 0.41860928 0.45381398 0.35124023 0.00697088
75 0.16016677 0.03182775 0.03407524 0.03155125 0.00485489
100 0.07137773 0.05441877 0.02106103 0.02473529 0.00448087
125 0.07409974 0.05401282 0.02335348 0.02792786 0.00262171
150 0.07912759 0.06101953 0.04328984 0.03437041 0.00896167
200 0.08566183 0.05777715 0.03322102 0.03714617 0.00211409

Table 3.6: Comparison of SNR for denoising algorithms for x-axis data

Algorithm -200° -150° -100° -50° -10° 0° 10° 50° 100° 150° 200°
DWT 16.2820 35.4263 26.6178 9.0240 39.7222 33.4051 18.6178 20.0969 5.4387 5.1968 7.8773
KF gain k1 14.9555 27.7989 14.8315 4.7608 -2.7746 -25.0756 -7.4079 18.4821 24.3805 12.0512 18.9661
KF gain k2 20.2510 18.2773 19.4476 20.1839 23.5680 7.9674 8.6380 23.6081 21.2299 16.6531 16.7447
AMADMKF 74.5519 81.4780 86.3498 69.9577 79.7814 71.1681 65.5719 101.9170 55.2844 43.4698 74.1783

AMADMKF technique as evident from Table.3.3 and Table.3.4. So Allan Variance

analysis concludes that proposed AMADMKF algorithm is superior as compared

to other considered algorithms [49, 94]. For dynamic case, the three-axis FOG is

subjected to different rotation rates from -200° to 200° with the step of 25° per

second. Bias drift is calculated using all the three algorithms in each rotation

rate and the values are tabulated in Table.3.5. From this table it is observed that

the proposed AMADMKF algorithm reduces the bias drift significantly at most

of the rotation steps. Similarly, SNR is evaluated for ten different step rotation

of dynamic signal. The results are tabulated in Table.3.6, it is observed that for

dynamic signal the AMADMKF algorithm increases SNR of denoised signal sub-

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 45

stantially as compared to other algorithms. In case of static signal the AMADMKF

algorithm detected some noise as discontinuity, this causes degradation of SNR.

However the difference between SNR of KF gain k1 and AMADMKF is marginal.

Hence, it can be concluded that the AMADMKF algorithm is more suitable for

denoising both the static and dynamic conditions of FOG signal.

3.6 FPGA implementation of denoised algorithms

This section presents the architecture (in terms of sysgen modules) of DWT and

KF algorithms for denoising the FOG signal.

3.6.1 Hardware architecture of DWT

The DWT hardware is developed using Xilinx system generator for DSP. To op-

timize time and resources several architectures of the DWT algorithm such as

convolution and lifting schemes have been developed for FPGA implementation

[95]. These architecture focus on minimizing the latency of the design. The ef-

ficiency of an architecture can also be enhanced by minimizing the arithmetic

blocks. Distributed arithmetic (DA) is one such popular architecture being used

in the design. It is also referred as multiplier free design [96]. In the present work,

DA technique is used for computing the convolution of DWT blocks. Although

it is concluded (from the previous Section 3.5) that DWT fails to denoise the

FOG signal in dynamic environment, we have implemented this in Xilinx sysgen

environment to compare the resource utilization with the architecture of other al-

gorithms. Figure.3.12 shows the procedure for algorithm to Intellectual Property

(IP) development phase of the DWT algorithm. When the DWT algorithm result

matches with the sysgen design result, an IP of the DWT algorithm can be tested

and integrated in SoC. In this work we have not built the IP of DWT algorithm,

because the algorithmic performance of DWT is not satisfactory.

The efficiency of the architecture plays an important role during the perfor-

mance evaluation. In DWT architecture group delay effect the synchronization

between the wavelet coefficients in various decomposition levels , this delay in-

creases as the level of decomposition increases. To reduce the group delay, convo-

lution architecture based on DA FIR filter is developed. This DWT architecture

processes serial samples, frame by frame for denoising the FOG signal. For im-

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 46

plementation of DWT in FPGA several half band high pass and low pass filters

are realized using DA FIR module [97]. Apart form this, the architecture has

up/down-converters, interpolators, summers and reinterpret blocks in decompo-

sition and reconstruction modules. A Black-box module is used for thresholding

the wavelet coefficients.

Gyro signal

Select Wavelet
And LoD

Match

FPGA

DWT
Algorithm

Hardware
Implementation

Compute Noise variance
And calculate Square root log

Threshold

Select Hard or Soft Threshold

Start

DWT IP Core generation and Integration
in SoC

No

Yes

Figure 3.12: DWT implementation procedure

We have selected db-2 as mother wavelet, Level of Decomposition (LOD) as

7 and the processing of FOG data is carried out frame wise with each frame

consisting of 1024 samples. Each decomposition stage has two FIR filters (low

pass, high pass) as shown in Figure.3.13. The low pass filter coefficients are fur-

ther decomposed into second level detail and approximation coefficients. This

process is repeated till the last decomposition level is reached. In each level of

decomposition, threshold is applied on the high pass filter coefficients as shown in

Figure.3.14. Hard threshold with Sqtwolog is selected as threshold selection rule.

During reconstruction, Inverse Discrete Wavelet Transform (IDWT) technique is

used as shown in Figure.3.15. It uses two filters (lowpass, highpass), the low pass

coefficients of seventh level is up-sampled by a factor of 2 and added with last stage

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 47

valid _out
3

app1
2

det1
1

Logical

or
z-0

Down Sample 4

2
z-1

Down Sample 3

2
z-1

Down Sample 2

en
2
z-1

Down Sample 1

en
2
z-1

DAFIR v9_0 1

x0

vin

rst

y0

vout
4 tap

DAFIR v9_0

x0

vin

rst

y0

vout
4 tap

Convert2

cast

Convert

cast

rst
3

valid 1
2

data 1
1

Figure 3.13: Single level decomposition structure

Out1
1

threshold_appln

x

thr

selt

y
sqtwolog_appln

n thr

Convert

castConstant1

256

Constant

1

In1
1

Figure 3.14: Threshold selection

valid _out
2

Out7
1

Logical

and
z-1

DAFIR v9_0 3

x0

vin

y0

vout
4 tap

DAFIR v9_0

x0

vin

y0

vout
4 tap

Convert

cast

AddSub

a
b

en
a + bz-1

ca73

valid _in
2

cd7
1

Figure 3.15: Single level reconstruction structure

thresholded high pass filter coefficients in order to first first stage reconstruction.

3.6.2 Hardware architecture of KF

The proposed KF hardware is developed using Xilinx system generator for DSP.

The KF hardware is divided into predict and update stages as shown in Fig-

ure.3.16. The complete hardware consists of Multiplexers, Divider Generator,

Registers, Accumulators, and Assert blocks. In the prediction state, Mux select

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 48

line is permanently made logic high, so as to always select previous posteriori er-

ror covariance. The value of Q is input through Constant 1 block. The result of

Add-Sub block gives the predicted (priori) error covariance. The predicted state

estimate is obtained through a feedback from the previous updated (posteriori)

state estimate using Register 2 and Mux 1. The output of Add-Sub 5 block gives

the KF gain. The innovation is calculated using the predicted state estimate (out-

put of Mux 1) and present measurement zk (Gateway out) and output of Add-Sub

2 block. Posteriori error covariance is obtained at the output of Multiplier 1. The

updated state estimate is obtained at the output of Add-Sub 3 block.

Signal To
Workspace

yout

Signal From
Workspace

fog _ip

Register 3

d qz-1

Register 2

d qz-1

Register 1

d qz-1

Register

d qz-1

Mux 1

sel

d0

d1

Mux

sel

d0

d1

Mult 4

a

b
(ab)z-0

Mult 3

a

b
(ab)z-0

Mult 1

a

b
(ab)z-0

Mult

a

b
(ab)z-0

Gateway Out

 Out

Gateway In

 In

Divider Generator 2.0

dividend

divisor

rfd

quotient

fractional

Convert

cast

Constant 9

10000000

Constant 8

10000000 Constant 6

1

Constant 5

1

Constant 4

-0.5

Constant 3

1

Constant 2

0

Constant 1

0.001

Constant

10

AddSub 5

a

b
a + b

AddSub 4

a

b
a - b

AddSub 3

a

b
a + b

AddSub 2

a

b
a - b

AddSub 1

a

b
a + b

AddSub

a

b
a + b

System
Generator

Figure 3.16: Sysgen KF architecture

3.7 Hardware architecture of the proposed algo-

rithm

The proposed AMADMKF algorithm uses four sub-modules, namely Moving Av-

erage & Memory module, Difference module (for computing the differences of sam-

ples), Variance module, and Threshold module along with the KF module. The

flowchart of this algorithm is presented in Figure.3.17. The complete architecture

of the system is shown in Figure.3.18. It consists of two asynchronous FIFOs

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 49

(depth of 8192 and width of 32 bits), one each at the input and output of the

AMADMKF module. The input signal is processed as a stream and each stream

has 4096 samples. When the input FIFO (FIFO1) and output FIFO (FIFO2)

receive these 4096 samples, then it asserts FIFO1 and FIFO2 as 50% full. This

architecture has IP Data and OP Data (32 bit width) data buses for data input

and output to and from the IP core respectively. The working principle of the

AMADMKF IP core is described below:

1. The AMADMKF IP core receives data from the PowerPC(PPC440) when

IP Data En is logic high, and it receives the data till the FIFO1 is 50% is

full. This is ensured by the control signal IP Data End as logic high.

2. When the AMADMKF IP core is ready for processing, it will give a hand-

shaking signal Input Data Rdy as logic high. The FIFO1 sends the Input Data

to the AMADMKF IP core when Core input En is logic high, and the data

transfer continues till Core Input End is logic high.

3. When the AMADMKF IP core processes inputs sequentially on the stream,

it gives Core Input En as logic high and this is acknowledged by the FIFO1

with handshaking signal Core Input Rdy. When this signal is logic high,

then the AMADMKF IP core is ready to send the processed samples to the

output to FIFO2.

4. AMADMKF IP core communicates with FIFO2 in the same way as FIFO1

communicates with AMADMKF IP. When output data is available at FIFO2,

OP Data En signal becomes logic high and the FCM sends an acknowledge

signal OP Data Rdy as high. Then the Output Data is transferred to FCM

till OP Data End becomes logic high.

3.7.1 Moving average & Memory module (MA & Mem-

ory)

This is the first stage of the AMADMKF core and the architecture of this module

is shown in the Figure.3.19. The default parameter values are N = 4096, q = 20,

and z = 3. These are obtained from the control logic and the other parameters

i.e. qt and qh are set to zero initially. Based on the value of z and selectAMA,

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 50

Store 4096 samples on input
FIFO from FoG sensor/memory

start

Initialize Moving Average with
default q=20, z=3 ,i=1 and select
t=[2q+1 to N-2q+1] data range only

i<=z

Determine D(t) and D’(t)

D’(t)<0D’(t)>0

Calculate Sample Variance
of obtained AMA output

Apply Threshold

Apply suitable Kalman Filter on
FOG data depends upon
Thresholded sample varainces

qt(t) = q
qh(t) = (1-(D(t)/Max(D(t)))q

qh(t) = q
qt(t) = (1-(D(t)/Max(D(t)))q

D’(t)=0

qh(t) = qt(t) =
(1-(D(t)/Max(D(t)))q

Update qt(t) and qh(t)

Perform Moving Average
Store resultant samples on
output FIFO

stop

i=i+1

Perform Moving Average on
range of Data=[2q+1 N-2q+1]
with qt(t) and qh(t) .

Figure 3.17: Flow chart of the proposed algorithm

FIFO1 FIFO2
MA
&

Memory

KF Gain k1

Threshold D
E-M

U
X

M
U

X

Kalman
Selection

Control logic

KF Gain k2

Variance

Diff
module

n

Core_IP_Data

N q

Op-state

IP_Data_EN

IP_Data_Rdy

IP_Data[31:0]

OP_Data_EN

OP_Data_Rdy

OP_Data[31:0]

f1 f2 f3 f4 f5 f6 f7 f8

Data

Select AMA

IP_Data_End

Core_IP_End

Core_IP_En

OP_Data_End

Core_OP_EndCore_IP_Rdy

q_en
Add_out[11:0]

Data_i+q[31:0]

Data_i+q[31:0]

Data_i-q[31:0]

qt[31:0] qh[31:-0]
q_sel

Input[31:0]

En

Rd_wr

Var

Core_OP_Rdy

AMADMKF Core

AMADMKF IP Core

Core_OP_Data[31:0]

Core_OP_En

Figure 3.18: Top level architecture of AMADMKF core

the control logic redirects output to Variance or Difference module. From Fig-

ure.3.19, MA & Memory module performs q-point MA operation on IP Data

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 51

MA

RAM1

q[31:0] N[11:0]

12-bit
Counter of Range
2q+1 and N-2q-1

Addr
gen

qt[31:0]

RAM0

z[7:0]

Data_i+q[31:0]

Data_i-q[31:0]

Input_data[31:0]

qh[31:0]

2q+1

2q-1

ce

Add0

Add1

valid0

MA data

Select AMA

valid1

Input_en

Add_out[11:0]

Figure 3.19: Architecture of Moving average and Memory module in AMADMKF
core

when the control logic asserts z = 0 and selectAMA = 0. A programmable 12-bit

counter and address generation module (Addr gen) are used for addressing the

RAMs. When valid0 and valid1 are at logic high, moving average data is stored

in RAM0 and RAM1. The data from RAM to output and MA to RAM is trans-

fered simultaneously resulting Data (i+ q) and Data (i− q) for processing in the

Difference module. The output data of MA uses only RAM0 Memory module

when selectAMA=1,Then the output data is transferred to variance module for

further processing.

3.7.2 Difference module (Diff)

The output data from MA & Memory module (Data (i+ q), Data (i− q)) are

input to the Difference module. The architecture of this module is shown in

the Figure.3.20. The counter with address generation output is connected to the

Addr in to address the RAMs, and q sel is the write enable control signal of RAM.

This module performs difference operation D(t) between x(t + q) and x(t − q))

samples, and also performs difference D′(t) between consecutive differences D(t).

qt and qh values are obtained depending on the different conditions/signs of D′(t).

These values are updated using equations (3.14) and (3.15). The Difference module

and MA & Memory module is updated z times to update the ping-pong memory

buffers with updated qt and qh values for the entire frame as in Figure.3.18

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 52

D’(t)>0 D’(t)<0

D’(t)=Diff(D(t))

D(t)=x(i+q)-x(i-q)

Data_i+q[31:0] Data_i-q[31:0]

D’(t)<0

qh(t)=q
qt(t)=
(1-(D(t)/Max(D(t)))*q)

qt(t)=qh(t)
=(1-(D(t)/Max(D(t)))*q)

qt(t)=q
qh(t)=(1-
(D(t)/Max(D(t)))*q)

Select
logic mux

qh_memqt_mem

qt qh

q_sel

Addr
gen

12-bit
counter

Figure 3.20: Architecture of Difference module in AMADMKF core

ACCUM

subtract

square

Addr_in<=3q-1
comparator

Addr_in<=(t-qt)
&>(t+qh)

comparator

Sample variance

Select_data[31:0]

Addr_in>N-3q+1
comparator

Counter of Range
t=2q+1 to N-2q-1

qt qh

RAM

Addr
gen

addr

en

ACCUM

Divider

Adder
qt+qh

Divider

Add_out[11:0]

Variance module

wr

qsel

en

Figure 3.21: Architecture of Variance module in AMADMKF core

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 53

3.7.3 Variance module

The detailed architecture of this module is shown in the Figure.3.21. The control

logic activates the Variance module when z > 3. The qt and qh values (from the

Difference module) are used to calculate the MA output in the MA & Memory

module. The output of the MA & Memory module (selectAMA) is used to cal-

culate the variance. This module has a comparator, which detects the address

between the memory locations (3q + 1, N − 3q − 1). This comparator output en-

ables the address generation unit and RAM. The output of AND logic enables

the accumulator to perform the average operation for calculating the mean and

sample variance.

14-bit
LFSR Single port

Ram
(16K)

14-bit
Counter

Data

Address

Mean value ()

Log
Lookup
Table
(16K) Multiplier Thr

Wr Rd

Address

En

0µ

µ >0

Counter

Var[31:0] Comp
(Var>thr)

Data

Kalman
Selection

Mean total
(N-6q-1) samples

Input[31:0]

RAM

12-bit
Counter of Range
2q+1 and N-2q-1 Addr

gen

Rd_wr

32-bit

Figure 3.22: Architecture of Threshold module in AMADMKF core

3.7.4 Threshold module

The detailed architecture of threshold module is shown in the Figure.3.22. This

module computes mean (µ) of the sample variances obtained from the variance

module. The comparator checks the condition µ > 0 and enables it to calculate

the threshold by multiplying µ with the distribution values stored in a log look

up table. If µ < 0, it makes thr = 0. The Enable signal starts the counter

and 14-bit linear feedback shift register (LFSR) to store the random numbers in

16Kbyte RAM. The predefined 14-bit wide logarithmic random values are read

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 54

from the single port ROM and multiplied by µ. Once the threshold is computed,

the comparator checks the variance with threshold and proper KF is selected.

Then the KF performs the denoising operation according to the gain parameters

and resulting denoised samples are transferred to FIFO2 as shown in Figure.3.18.

3.7.5 Control logic

The control logic synchronizes rest of the submodules and generates the necessary

inputs to them. It collects all the flags f1,f2,..f7 that are associated with each indi-

vidual module. These flags are useful to debug various stages of the architecture.

3.8 Programmable System on Chip (PSoC) plat-

form for AMADMKF coprocessor

In this work, a PSoC prototype for denoising FOG signal is developed [89]. It

is an integrated system that integrates processors, peripherals, memories and co-

processor on a single chip. The FPGA SoC mainly offers hardware re-use and

easier programmability to an user for developing complex systems. The proposed

SoC system using Virtex-5 FPGA consists of PPC440 processor and peripher-

als such as UART (RS-232), DDR2-SDRAM, BRAM, Timer, Interrupt modules,

custom hardware accelerators and APU based coprocessors. Processor Local Bus

(PLB) is intended for communication between processor and peripherals in FPGA-

based SoC. The Fabric Co-Processor Bus (FCB) is a dedicated high-speed, low

latency bus between the processor and APU for faster transferring from APU to

processor and vice versa as shown in Figure.3.23.

A Fabric Coprocessor Module (FCM) of AMADMKF algorithm is developed

and interfaced with embedded PPC440 processor through APU controller to accel-

erate computation of the algorithm. Using extended instructions of load and store

for transferring the data between Processor and APU are used [4]. The processor

(PPC440) is a preferred choice over other soft core processors like Microblaze in

FPGA, due to its high speed of operation and efficient resource utilization [16].

The proposed SoC platform is shown in Figure.3.23. It has three main blocks

namely, processor (PPC440) with APU interface, FCM and external peripherals

such as memory controller and two UART (RS-232) based communication serial

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 55

PowerPC440

Interrupt DDR

PLB Bus

Clock
Generator

33MHz (Hw_Clk)

200MHz (Proc_Clk)

Timer

INTR

BRAM
Controller

BRAM

MCI

Profile Timer

FCB Bus

COPROCESSOR

JTAG
RS232_0
(115200)

AMADMKF
IP Core

Gyro

Matlab-PC

100MHz

RS232_1
(115200)

Figure 3.23: FPGA based SoC system

links. The PPC440 is connected to the Processor Local Bus (PLB) via Master port

(MPLB) and DDR2-SDRAM is connected through the Memory Controller Inter-

face (MCI). The other slave peripherals like serial communication links UART 0,

UART 1 and Flash memory are connected to the common processor local bus

(PLB) through Slave PLB port. The FCM for AMADMKF core is interfaced to

the PPC440 through the Fabric Coprocessor Bus (FCB). The AMADMKF co-

processor frequency is adjusted by system clock generator to 33 MHz. This clock

generator which is not shown in Figure.3.23 not only generates the clock for co-

processor but also it generates clock for the entire SoC system i.e. PPC440 clock,

DDR clock, Bus Clock etc.

The UART 0 RX link receives the input from FOG and transmits the data to

FPGA for denoising. The hardware module (AMADMKF) denoises the noisy data

and transfers denoised data to the PPC440. UART 1 TX transmits the denoised

data from the FPGA to Matlab-PC for analyzing and plotting the denoised result.

The FOG board has a 25 volts DC-DC converter for power supply and RS422 -

RS232 converter for receiving the input from FOG at baud rate of 115200. Noisy

data from FOG contains temperature, rotation rate and Cyclic Redundancy Check

(CRC) informations. A software code is written on PPC440 for acquiring the gyro

data for CRC check and header detection. Then the data samples are input to

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 56

Figure 3.24: FPGA based SoC testbed setup for AMADMKF in real time

the AMADMKF FCM for denoising. Finally the denoised output data are sent

to Personal computer (PC) through RS232 1 for further analysis. DDR2-SDRAM

is used to store the heap and stack of the software program. Compact flash

peripheral is used to test the off-line test of gyro data and also to store the denoised

data. In this work, we process only one component of Inertial Measurement Unit

(IMU), there are several other modules like processing of other 2 gyroscope signals,

3 accelerometer signals, estimating the navigation information, interfacing and

processing with other sensors. Moreover the baud rate has to be increased to

921.6 Kbps. All these combined processing requires higher end FPGA. For these

reasons, in the first stage of prototype development Virtex-5 FPGA is selected.

Although it is cost effective, but it has enough resources to accommodate the

complete process requirements.

The SoC system with APU co-processor using PPC440 processor for denoising

the FOG signal is similar to Figure.2.4 of Chapter 1. It has mainly two modules,

i) APU wrapper and (ii) AMADMKF IP core. The objective of APU wrapper is

to interface FCM (AMADMKF IP core) with processor, whereas AMADMKF IP

core is used to denoise the samples. APU wrapper contains two different modules

namely IP APU and APU IP interfaced with the IP core similar to Figure.2.6. For

load data (APU IP), APU Controller sends entire 128-bit bus along with starting

byte address to the FCM and it checks the starting byte address to identify the

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 57

valid data. During the store instruction, (IP APU) transfers the denoised samples

from FCM to processor (PPC440). A snapshot of the real time test bed is shown

in Figure.3.24

3.9 Implementation results

3.9.1 FPGA implementation of AMADMKF IP core re-

sults

After successful algorithmic simulation, AMADMKF algorithm is coded using

HDL language and functional verification is performed. The interface wrapper

logic and the AMADMKF core are simulated using a test bench and the results

are compared with the Matlab/C software output. The simulation results of DWT,

KF, AMADMKF are shown in Figure.3.25. When the Output Data Rdy signal

is logic high, the denoised output data is available at Output Data port which is

in fixed point format and are scaled and converted into single precision floating

point format to compare with the software MATLAB/C results.

The resource utilization of individual algorithms and total SoC system with

AMADMKF IP are tabulated in Table.3.7. This table shows percentage of re-

sources utilized among the individual available resources in the FPGA. The KF

algorithm involves arithmetic operators like Dividers, multipliers, adders, and due

to this it uses more DSP48E slices, whereas AMADMKF algorithm uses simplified

expressions which reduces the computations. Although it has less computation,

but since it processes 4096 samples as one frame and denoises the signal frame by

frame in contrast to KF algorithm which processes the signal sample by sample,

AMADMKF algorithm consumes more resources than KF algorithm. It is ob-

served that the latency of KF is less due to the sequential processing of samples in

contrast to frame processing of DWT and AMADMKF algorithm. The execution

time of these algorithms are evaluated and used as a performance indicator for

comparing different algorithms.

FPGA has a mixture of heterogeneous device primitives (Slice Registers, Occu-

pied Slices, Slice LUTs, BRAMs, and DSP48s). For area comparison, all the device

primitives are converted to logic cells [98]. The resource utilization of different al-

gorithms are tabulated in Table.3.7. From this Table, it is observed that DWT

algorithm consumed more number of slices and slice registers, KF consumed more

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 58

0 ps 200000000 ps

Clock

Reset

Input_Noisy_Data

Output_Denoised_Data

Input_Valid

Output_Valid

Entity:fog_dynaic_dwt_tb Architecture:structural Date: Thu Jan 17 5:40:55 PM India Standard Time 2013 Row: 1 Page: 1

(a) Hardware core simulation of DWT algorithm for y-axis static data

0 ps+5 200000000 ps

Clock

Input_Noisy_Data

Output_Denoised_Data

Entity:kf2_tb Architecture:structural Date: Thu Jan 17 2:00:25 PM India Standard Time 2013 Row: 1 Page: 1

(b) Hardware core simulation of KF algorithm for y-axis static data

0 ps 400000000 ps 800000000 ps

Reset

Clock

IP_Data_En

IP_Data_End

IP_Data

IP_Data_Rdy

OP_Data_En

OP_Data

OP_Data_End
OP_Data_Rdy

Entity:test_top Architecture:behavior Date: Mon Dec 17 9:29:03 PM India Standard Time 2012 Row: 1 Page: 1

(c) Hardware core simulation of AMADMKF algorithm for y-axis static data

Figure 3.25: Comparison of denoised algorithm versus hardware simulation

BRAM and DSP48E slices and AMADMKF algorithm consumed more BRAM

and slices. It is also observed from Table.3.7 that the proposed algorithm has a

trade-off between execution time, area and SNR. AMADMKF algorithm is supe-

rior to both KF and DWT algorithms in terms of SNR and area. In contrast this

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 59

algorithm takes more execution time compared to both KF and DWT algorithms

Table 3.7: Comparison of resource utilization for denoised IP cores

Resources(available) DWT KF AMADMKF SoC system
Slice Registers(42000) 24177(53%) 4980(11%) 4598(10%) 7469(16%)
Slice LUTs(42000) 18887(42%) 2213(4%) 9542(21%) 12184(27%)
Occupied Slices(11200) 6668(59%) 479(4%) 3407(30%) 8902(79%)
DSP48Es(128) 9(7%) 44(34%) 9(7%) 9(7%)
Block-RAMs(148) 74(50%) 79(53%) 39(36%) 85(57%)
Maximum-frequency(MHz) 236 54 67 200
Latency in cycles 82 4 54 -
Logic cells(48256) 10912 16690 6761 12821
Execution Time(µs) 0.34 0.07 0.8 1.63

It is concluded that from Table.3.7, although AMADMKF algorithm is not

optimum with respect to execution time but it is a suitable algorithm for denoising

FOG signal in terms of resource utilization and SNR. So SoC system is built using

AMADMKF algorithm and the comparative results are plotted in Figure.3.26 and

Figure.3.27. The bias drift of IP is calculated and compared with the software

result. The results are tabulated in Table.3.8.

3.9.2 PSoC implementation results

Table.3.7 shows that SoC implementation of AMADMKF core has increase in

logic cells compared to AMADMKF core. This is due to the additional resources

like processor PPC440, DDR2-SDRAM, internal memory controllers and UARTs

in the system. The acceleration factor of the proposed hardware IP with respect

to its equivalent software implementation on the embedded processor (PPC440)

is tabulated in Table.3.9 which shows that an acceleration of 65x is achieved by

the developed hardware IP. This is a significant acceleration. The embedded

platform is validated by denoising the collected FOG data sets. The SoC results

are compared with the MATLAB simulated results of AMADMKF algorithm and

are plotted in Figure.3.27. For clear observation, Figure.3.26a and Figure.3.26b

shows a stationary portion of the denoised signal using the MATLAB simulation

(AMADMKF) and SoC implementation whereas Figure.3.27a and Figure.3.27b

shows the portion of denoised signal in between the transitions of a dynamic

signal. This figure confirms that the developed embedded platform denoises the

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 60

signal effectively.

26 28 30 32 34 36 38

−0.15

−0.1

−0.05

0

0.05

0.1

Time (Sec)

D
eg

/S
ec

Noisy FOG signal
AMADMKF SW
AMADMKF SoC

(a) Denoised x-axis data
in static region (i)

50 100 150 200 250 300 350 400 450 500

4

4.5

5

5.5

6

x 10
−3

Time(Sec)

D
eg

/S
ec

Noisy FOG signal
AMADMKF SW
AMADMKF SoC

(b) Denoised x-axis data
in static region (ii)

Figure 3.26: Comparison of algorithm vs. SoC implementation results (static
region)

500 1000 1500 2000 2500 3000 3500 4000

−6

−4

−2

0

2

4

6

x 10
−3

Time(Sec)

D
eg

/S
ec

Noisy FOG signal
AMADMKF SW
AMADMKF SoC

(a) Denoised x-axis data
at multiple transitions in dynamic condition

2 4 6 8 10 12

x 10
4

−12

−10

−8

−6

−4

−2

Time (in seconds)

D
eg

/S
ec

Noisy FOG signal
AMADMKF SW
AMADMKF SoC

(b) Denoised x-axis data
at single transition in dynamic condition

Figure 3.27: Comparison of algorithm vs. SoC implementation results (dynamic
condition)

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 61

Table 3.8: Standard deviation of x-axis data denoising using software and hard-
ware

Rotation(Deg/(Sec)) Input AMADMKF SoC AMADMKF
0 (static) 0.01514121 0.0019 0.0019

-200 0.07903444 0.0019 0.0018
-175 0.06971800 0.0044 0.0044
-150 0.08232674 0.0013 0.0013
-125 0.08772601 0.0012 0.0011
-100 0.08254453 0.0011 0.0011
-75 0.07587522 0.0014 0.0014
-50 0.07272912 0.0021 0.0021
-25 0.16273886 0.0072 0.0072
-10 1.18274250 0.0218 0.0218
-5 0.52355471 0.0051 0.0051
0 0.09825683 0.0027 0.0027
5 0.36446447 0.3679 0.3572
10 0.10345610 0.0038 0.0037
25 0.52383367 0.0109 0.0109
50 1.14341674 0.0069 0.0069
75 0.16016677 0.0048 0.0048
100 0.07137773 0.0044 0.0044
125 0.07409974 0.0026 0.0026
150 0.07912759 0.0089 0.0089
200 0.08566183 0.0021 0.0021

Table 3.9: Execution time of AMADMKF algorithm in SW and HW

No of Frames SW(µs) HW(µs) Acceleration factor (SW
HW

)
2 548.67 8.46 64.85
10 2795.89 42.54 65.72

3.10 Conclusions

In this chapter, a new algorithm namely Adaptive Moving Average based Dual

Mode Kalman Filter (AMADMKF), is proposed for denoising the Fiber Optic

Gyroscope signal. The performance of the algorithm is compared with the Dis-

crete wavelet transform (DWT), and the standard Kalman Filter (KF) algorithm.

It is observed that AMADMKF algorithm improves the standard deviation and

signal to noise ratio by a factor of 100 and 80 dB respectively. However, the KF,

has shown competitive performance as AMADMKF algorithm while considering

the standard deviation and signal to noise ratio as a performance indicator for

denoising static and dynamic signal. A co-processor for AMADMKF algorithm

CHAPTER 3. COPROCESSOR FOR FOG SIGNAL DENOISING 62

is developed and hardware IP simulation results are matched with the algorith-

mic simulation results. The performance of AMADMKF is compared with DWT

and KF algorithm. It is concluded that the proposed algorithm is the optimum

algorithm in terms of area and SNR, whereas KF algorithm is better in terms of

execution time. A system on chip implementation of the AMADMKF algorithm

using Xilinx Virtex-5FX70T-1136 FPGA is proposed and tested. The execution

time of the developed AMADMKF IP is 65x faster than the equivalent software

execution time in the PowerPC440 embedded processor.

Chapter 4

Coprocessor for Differential

Evolution algorithm

Mutation Crossover Selection

DDR
Clock

Generator
100MHz(SPLB_Clk)

Timer

Profile Timer

Initialization

PowerPC440

PLB Bus
33MHz

Hw_Clk

INTRBRAM
Controller

BRAM

MCI

FCB Bus

Fitness
Evaluation

DE
CORE

CO-PROCESSOR

DE
CORE

SLAVE Unit

FCM

JTAG UART

Fitness
Evaluation

Interrupt

Σ

Unknown
plant

IIR filter

DE
algorithm

Y(k)

d(k)

e(k)
+

_

System Identification Problem

X(k)DE core

63

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 64

This chapter presents the design and implementation of the coprocessor for

computing DE algorithm. This is second case study of thesis. The details of

proposed architecture of fixed and float DE algorithm along with System on Chip

(SoC) implementation is also presented. The Intellectual Property (IP) is inter-

faced using both Auxiliary Processing Unit (APU) and Slave Unit (SU) interface

techniques with the PowerC440 (PPC440) processor in SoC platform. The perfor-

mances of the IP are evaluated with respect to acceleration and power consump-

tion. Further more, a system identification using Infinite Impulse Response (IIR)

filter is realized using the developed IP and the hardware acceleration is reported.

4.1 Introduction

Optimization is the branch of science that deals with methods to obtain best pos-

sible solution for a given set of problems. The quality of solutions are expressed

in terms of a numerical values. Thus the aim of optimization is to select the best

possible decision for a given set of circumstances. In recent years, the subject of

computational science has matured and is widely used in science and engineering

applications [99]. There are different Evolutionary Algorithms (EAs) such as Ge-

netic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution

(DE) etc. for solving optimization problems, out of which DE is a popular method

because i) it is simple to implement less complexity, ii) it has better performance in

comparison with other EA algorithms and iii) it has less number of control param-

eters and less space complexity. Most of the evolutionary techniques have been

implemented in a high end desktop computer/processors to solve optimization

problems. The applications like Motion estimation [100], pole-placement design

of infinite-impulse-response filter [101], future generation evolvable machines [102]

use evolutionary algorithm to derive optimal solutions. These applications gener-

ally uses low-performance microprocessors with limited computational resources,

rather than high-performance desktop personal computers/processors to execute

the evolutionary algorithms. The time consuming evolution process limits the use

of evolutionary algorithms in an embedded applications. This leads to slow execu-

tion speed of the algorithms in an embedded processor. In order to meet the real

time execution speed requirement, one can either proceed with the parallelization

of the algorithm or implement the design onto the hardware. Generally, embedded

systems are designed to perform one dedicated task, which is different from gen-

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 65

eral purpose computer system to meet the real-time constraints and quality of the

solution. There are several platforms to develop an embedded system with its own

advantages and disadvantages and FPGA is one such platform [11]. In this work,

we choose FPGA as development platform, because it has the flexibility to design

entire system either in firmware or hardware, or the system can be partitioned

into hardware and firmware.

DE algorithm has been widely accepted and implemented on general purpose

processors, but mostly it is executed in an off-line mode of desktop simulation.

It can be implemented in both embedded processor and hardware using either

fixed point or floating point arithmetic. Although floating point DE gives better

accuracy but at the expense of high computation cost. It leads to slowdown the

execution of the algorithm in embedded processor approximately by 5-40x. In the

literature, there is no reported work which implements the DE algorithm in hard-

ware for accelerating its execution speed. Hence in this work, fixed and float DE

IPs are developed. In floating point DE IP, the fabric FPU is used to carryout the

floating point arithmetics. A complete SoC is built by interfacing the IP with the

PPC440 using APU & SU interfacing techniques in the Xilinx FPGA development

board. The performance of the DE IP for both the interfaces are evaluated. The

objective of this work is to implement the DE in the FPGA platform to accelerate

the optimization speed. This work focuses on only improving the speed of the

optimization time and not to improve the quality of solutions. For improving the

quality of solution different variants of DE algorithm can be explored.

In this work, basic DE algorithm is used for hardware implementation. It has

three major computational steps, (i) random number generation, (ii) fitness func-

tion evaluation, and (iii) population update. For complex applications, execution

time of the fitness function evaluation dominates the overall execution time of the

DE algorithm. So in general the execution speed can be improved by designing

hardware accelerators for fitness evaluation. In this approach, fitness function

evaluation module can be in hardware (HW) and remaining logic of DE algorithm

can be in the processor/ software (SW). In other way, the fitness function can be

implemented in SW and remaining part of the algorithm in the HW (HW/SW co-

design), in both the cases the bus transition time will dominate the execution time

for evaluating the fitness function. On the other hand, if the total DE algorithm

including fitness function evaluation is implemented in the embedded processor

of FPGA, then there will be no acceleration in execution speed [103]. All the

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 66

above approaches will not give any additional improvement in terms of execution

speed. So, an alternate choice is explored in which all the modules of DE includ-

ing fitness function evaluation module are implemented in hardware, and use it as

a dedicated hardware accelerator. There are two different interfacing techniques

are adapted for hardware accelerators and these are being used for accelerating

DSP algorithms [29]. In the first technique, the IP is interfaced using Auxiliary

Processor Unit (APU) to the embedded processor (PPC440) and in other tech-

nique, it is interfaced as a Slave Unit (SU) with the shared local bus of embedded

processor. The proposed accelerators are scalable in terms of the population size,

number of generations and dimension, which can be modified by the user through

the embedded processor. In the proposed design, both the fitness function evalu-

ation and DE IP are realized in a single module rather than in different modules

[104]. The proposed DE IPs in fixed and floating point modules are interfaced

as APU to solve the Infinite Impulse Response (IIR) Filter based system identi-

fication problem. In this application IIR filter coefficients are obtained using the

developed DE hardware accelerator.

4.2 Literature survey

Numerous hardware implementation of EAs have been described in literature.

A comprehensive review of literature related to FPGA implementation of EA is

tabulated in Table.4.1. A Complete Hardware Evolution (CHE) of GA was im-

plemented on a single FPGA to evaluate single variable fitness functions [105],

and reported that the execution speed is improved significantly as compared to

its software implementation. However, this implementation has no provision to

configure the GA parameters like mutation, crossover rates, population size and

number of generations, and it cannot be directly interfaced to higher dimensional

fitness functions. To overcome the above mentioned drawbacks in [105] a cus-

tomized Intellectual Property (IP) of genetic algorithm was implemented in the

Xilinx FPGA and integrated with PowerPC 405 processor based SoC and the

speed enhancement up to 5.16x was achieved in Virtex-II Pro development kit

[106]. A modular co-design architecture was developed for particle swarm op-

timization (PSO) algorithm [104], in which particle positions were updated in

hardware whereas the fitness function was evaluated on a Nios-II embedded pro-

cessor. Due to this approach, the design has a flexibility to modify the fitness

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 67

functions in the software depending on the applications. With this approach var-

ious embedded applications can be developed simply by changing the objective

function. This design achieved speedup of 20x in Altera development kit. Hard-

ware architecture of pipelined PSO (PPSO) was developed along with the parallel

PSO framework which consists of multiple Nios -II processors using System-on-a-

programmable-chip (SOPC) methodology and resulted speedup of 98x compared

to the software implementation of the PSO algorithm in Altera development kit

[107]. A modular, flexible and reusable multi-swarm PSO parallel hardware archi-

tecture was proposed to overcome the drawbacks of software implementation of

the PSO algorithm using a Freescale micro-controller and Xilinx MicroBlaze soft

processor core [108]. A hardware accelerator for parallel PSO (pPSO) algorithm

was reported and validated its performance by optimizing test bench functions on

Microblaze (MB) processor based SoC in a Virtex-6 development kit [109]. The

PSO algorithm was tested on MB at 200MHz and compared the acceleration with

a dedicated PSO IP, which shows 18-135x acceleration.

Table 4.1: Review of existing literature on FPGA implementation of evolutionary
algorithms

Work Algorithm Processor(Hz) IP Freq (Max Freq) FPU Used Speedup Target Board
MHz

[106] GA PowerPC (200) 50 (50) No 5.16x Xilinx Virtex-II Pro
[105] GA PC - (50) No - Xilinx SP3E
[104] PSO Nios-II (50) 50 (50) No 20x Altera DE2-70
[107] PSO 4 Nios-II (50) 50 (76.3) No 98x Altera Stratix
[108] PSO Freescale (25) 25 (-) No 359x-653x MC9S12DP256B

Microblaze (25) 25 (42.5) & 25(29.8) 37x-52x Xilinx Virtex-II Pro
Xilinx SP3E

[109] PSO Microblaze (200) - (233) No 18x-135x Xilinx Virtex-6
[110] GA 16 EM64T CPU(3.2G) 8-15(-) Yes 1.3-3x Altera Cyclone
[111] GA CPU (2.7G) 190(175) Yes 7-116x Xilinx Virtex-5

GPU (Nvidia Quadro FX) (450M) 110(100) 7.3-12.3x
[112] PSO CPU(1.6G) with MATLAB 50(94) Yes 78-127x Xilinx Virtex-5
[113] PSO Microblaze(50M) 50(99) Yes 6490-13820x Xilinx Virtex-5

CPU(1.6G) with MATLAB 3.6-4.2x
[114] PSO Microblaze(50M) 40(40) Yes 6465-13888x Xilinx Virtex-5

CPU(1.6G) 1.4 -3.1x
Present work [103] DE PPC440(200M) 33(65) No 80x-150x Xilinx Virtex-5

Present work[7] DE PPC440(200M) 50(120) Yes 200x Xilinx Virtex-5

Vijay et al., reported three different parallel processing architectures of GA

to improve the performance in terms of execution speed. It uses multiprocessor

(PGA), reconfigurable hardware using a pipelined architecture (HGA) and parallel

architecture (PHGA). The parallel GA (PGA) in multiprocessor uses Message

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 68

Passage Interface (MPI) and executed on Rocks cluster with 16 EM64T CPUs

each with a clock frequency of 3.2GHz. Similarly, HGA, PHGA were implemented

on a reconfigurable Altera Cyclone FPGA with clock rate between 8 to 15 MHz.

PHGA architecture uses both pipeline and duplicated hardware module for fitness

evaluation to give additional parallelism. It is reported an acceleration of PHGA

architecture for GA IP (1.3-3x) compared to software implementation, and this

hardware was used to solve real-time scheduling problem [110].

Vaš et al., developed a hardware accelerator for cartesian genetic programming

with multiple fitness units which uses intelligent memory organization and contains

multiple virtual reconfigurable circuits to evaluate several candidate solutions in

parallel [115]. Further, the hardware was tested with an application of image

filter which showed significant speed up over 170x compared to equivalent software

implementation on PPC440 in Virtex-5 FPGA.

Munoz et al., implemented the hardware architecture for parallel Particle

Swarm Optimization (PSO) using Floating-Point (FP) arithmetic. In this imple-

mentation, PSO core was operated at 50 MHz and it achieved an acceleration of 78-

127x compared to software implementation while optimizing test functions running

at 1.6 GHz speed with 1 GB RAM [112]. The work was extended in [113], which

implemented parallel self-adaptive PSO using higher precision with large dynamic

range FP arithmetic to perform computations. This hardware used attractive-

repulsive scheme to avoid premature convergence of PSO and gave an acceleration

of 6490-13820x compared to equivalent software implemented in MB processor on

a Virtex-5 FPGA (xc5vlx330). The fully parallel and partial parallel PSO imple-

mentation results were compared in similar test conditions [112, 113, 114]. From

the Table.4.1, it shows that parallel PSO speed up the software application on

Microblaze without FPU by 6465-13888x and partial parallel hardware speed up

by 3595-6725x compared to parallel PSO.

The hardware implementation of DE in Graphical Processing Unit (GPU) us-

ing Computer Unified Device Architecture (CUDA) was developed for accelerating

the execution speed of a co-evolutionary DE algorithm [116]. The computation

time of co-evolutionary DE algorithm in CUDA architecture was compared with

the computation time of the same algorithm implemented and was reported that

the CUDA architecture significantly improves the execution speed [117]. However

CUDA is not suitable for embedded applications due to its high power consump-

tion and operating speed.

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 69

Gomez-Pulido et al., implemented the GA algorithm on FPGA, CPU and

GPU with different fitness functions using FP arithmetic. Applications like i)

error correcting codes optimization, ii) radio network design and iii) adjusting

of X-ray diffraction profiler. The FPGA hardware has shown an acceleration

of 7.3-12.3x and 7-116x compared to GPU and CPU respectively. The use of

reconfigurable hardware lowers cost and power consumption compared to GPU,

which is desirable when they are applied for intensive scientific calculations in

parallel computing environments [111].

Evolutionary algorithms are used in applications like Infinite Impulse Response

(IIR) based adaptive filtering, system identification etc. Evolutionary algorithms

such as GA [118], swarm intelligence [119, 120], DE [121, 122] have been used to

solve system identification problem. So in this work we used the DE IP for solving

IIR system identification problem and evaluated the hardware acceleration.

4.3 Differential Evolution algorithm

Differential Evolution (DE) algorithm has been proved to be an efficient algorithm

to accurately compute the global optimum solution for optimization problems and

multi-modal optimal control problems [123]. DE employs real-coded variables and

typically relies on mutation as the search operator [124]. It has evolved to share

many features with conventional GA, like both maintain populations of potential

solutions and use a selection mechanism for choosing the best individuals from

population [125]. It is a parallel direct search method that employs a population

of size NP , floating/fixed point encoded individuals or candidate solutions.

Basic DE algorithm has four major steps; (i) population initialization, (ii)

mutation operation, (iii) crossover operation, and (iv) selection process as shown

in Figure.4.1. The complete pseudo code of DE is given in Algorithm 1. The

performance of DE accelerators are tested by optimizing a set of numerical test

bench functions as tabulated in Table.4.2 (CEC 2005 and 2010 [126, 127]. These

numerical functions include four low-dimensional and two high-dimensional func-

tions as mentioned in Appendix-A. The DE algorithmic control parameters are

tabulated in Table.4.3. The DE algorithm starts by initializing parameters and

population values. The population of size NP are randomly generated within the

predefined range, and these are passed to an objective function for evaluating the

fitness values.

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 70

Start

Initialize
Paramete

rs

Initialize
Programmable
DE parameters

Generate
population and

their fitness

Mutation

Crossover

Selection

Stop

Gen<=Gmax

Gen=Gen+1

No

Yes

No

Yes

Update
Population

Figure 4.1: Flow chart for DE algorithm

In each generation, individuals of current population become target vectors.

For each target vector, mutation operation gives a mutant vector, by adding the

weighted difference between two randomly chosen vectors to a third vector. Next

crossover operation generates a new vector, called trial vector, by mixing the

parameters of the mutant vector with those of the target vector. If the trial

vector obtains a best fitness value than the target vector, the trial vector replaces

former target vector in the next generation. This process repeats until a maximum

number of generation is reached. The flowchart of DE algorithm in shown in

Figure.4.1.

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 71

Algorithm 1 Pseudo-code for the Differential Evolution Algorithm

Step 1: Read the control parameter values of the DE algorithm :
scale factor (F), crossover rate (CR), maximum number of iterations GMAX the
population size NP , and dimension (D) from user.

Step 2: Set the generation number Gen=0 and randomly initialize a population
of NP individuals PG=[X

(G)
1 ,, X

(G)
i , ..., X

(G)
NP] with

X
(G)
i =[x

(G)
1,i ,, x

(G)
3,i , ..., x

(G)
D,i] and each individual uniformly distributed

in the range [Xmin, Xmax], where Xmin={xmin
1 , xmin

2 ,, xmin
D } and

Xmax={xmax
1 , xmax

2 ,, xmax
D } with i = [1, 2,, NP].

Step 3:
while (stopping criterion not satisfiedORMax no.of iterations not reached)
For i=1 to NP //do for each individual sequentially

Step 3.1: Mutation Step
Generate a mutant vector V

(G)
i ={vG1,i,, vGD,i} corresponding to the ith target

vector X
(G)
i via the differential mutation scheme of DE as:

V
(G)
i = X

(G)
r1 + F.(X

(G)
r2 −X

(G)
r3)

Vector indices r1, r2 and r3 are randomly chosen, where r1, r2 and r3 {1,...,NP}

Step 3.2: Crossover Step
Generate a trial vector U

(G)
i ={u(G)

1,i ,, u
(G)
D,i} for the ith target vector X

(G)
i

through binomial crossover in the following way:
u
(G)
j,i = v

(G)
j,i , if (randi,j[0, 1] ≤ CR or j = jrand)

u
(G)
j,i =x

(G)
j,i , otherwise

Step 3.3: Selection Step
Evaluate the trial vector U

(G)
i

if f(U
(G)
i) ≤ f(X

(G)
i), then

X
(G+1)
i = U

(G)
i

else
X

(G+1)
i = X

(G)
i

endif

Step 3.4:Increase the Generation Count
Gen = Gen + 1

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 72

Table 4.2: Benchmark functions used for performance analysis

No. Function name Dimension Optimal
Objective Value

Fun1 Rosenbrock 2 0
Fun2 Goldstein 2 3
Fun3 Sphere 3 0
Fun4 Variably dimensioned 4 0
Fun5 Shifted Sphere 32 0
Fun6 Shifted Schwefel 32 0

Table 4.3: Control parameters of the DE algorithm

Control Parameters Value
Population Size (NP) 8,16,32
Total Number of Independent runs (GMAX) 1,50,100
Dimension (D) 8,16,32
Weighting Factor(F) 0.9
Crossover constant(CR) 0.9

4.4 Software profiling of DE algorithm

Profiling is an important step in the development of embedded applications. Through

profiling, computationally intensive functions as well as most often computations

inside these functions are identified. This information can be used to decide which

part of the algorithm should be implemented in hardware (logic blocks of the

FPGA) and which part in software (embedded processor of the FPGA). So, soft-

ware profiling for an algorithm is necessary before implementing the algorithm

into hardware. Software profiling of both the fixed and floating point DE algo-

rithm is carried out on PPC440 processor with clock frequency set to 200 MHz.

The execution time of the DE algorithm (in embedded processor) for optimizing

six different test bench functions are tabulated in Table.4.4. In the Table.4.4, SW

denotes execution time for optimizing a test function, in the embedded proces-

sor; ’float’ and ’fixed’ corresponds to floating point and fixed point DE variants

respectively. It tabulates the average execution time (in msec) and percentage of

standard deviation (Std%) of execution time of both arithmetic of DE algorithm

for 20 independent runs implemented in the embedded processor (SW). This ta-

ble show results with maximum iterations GMAX = 1, 50, 100 and for different

population sizes NP = 8, 16, 32. This table reveals that for optimizing high di-

mension test functions, fixed point software algorithm gives approximately 4.96 -

7.36x acceleration over the floating point software algorithm. For optimizing low

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 73

Table 4.4: Execution time of the DE algorithm implemented in software

NP =8 NP=16 NP=32
Float Fixed Float Fixed Float Fixed

Test Function GMAX SW(ms) SW(ms) Acceleration SW(ms) SW(ms) Acceleration SW(ms) SW(ms) Acceleration
(Std%) (Std%) factor (Std%) (Std%) factor (Std%) (Std%) factor

1 4.91 0.15 32.73 9.44 0.26 36.31 18.36 0.52 35.31
(3.2) (2.8) (2.5) (2.2) (1.4) (1.2)

Fun1 50 181.05 5.38 33.65 332.37 9.69 34.30 641.81 18.82 34.10
(1.4) (0.9) (0.7) (0.4) (0.4) (0.2)

100 363.17 10.38 34.99 673.21 19.33 34.83 1,301.32 37.51 34.69
(1.1) (0.5) (1.4) (0.4) (1.1) (0.2)

1 8.01 0.18 44.50 15.02 0.31 48.45 28.73 0.61 47.10
(1.9) (2.2) (1.5) (2.3) (0.8) (1.2)

Fun2 50 264.53 5.97 44.31 491.39 10.85 45.29 940.12 19.82 47.43
(1.4) (0.9) (0.9) (0.4) (0.7) (0.2)

100 536.05 11.96 44.82 994.24 21.64 45.94 1,897.45 39.26 48.33
(1.5) (0.5) (0.9) (0.3) (0.7) (0.2)

1 5.12 0.16 32.00 10.13 0.31 32.68 19.88 0.61 32.59
(1.3) (2.7) (1.9) (1.3) (0.8) (0.6)

Fun3 50 199.54 5.83 34.23 371.94 11.08 33.57 720.03 21.64 33.27
(0.8) (0.6) (0.4) (0.3) (0.2) (0.2)

100 397.91 11.62 34.24 740.14 22.08 33.52 1,432.64 43.16 33.19
(0.8) (0.5) (0.3) (0.3) (0.2) (0.2)

1 9.99 0.23 43.43 19.36 0.45 43.02 38.38 0.84 45.69
(1.9) (2.2) (0.9) (1.2) (0.5) (0.6)

Fun4 50 305.79 7.08 43.19 584.59 13.48 43.37 1,145.25 26.46 43.28
(0.6) (0.4) (0.3) (0.2) (0.1) (0.2)

100 612.92 14.11 43.44 1,178.46 26.94 43.74 2,304.13 52.77 43.66
(0.7) (0.3) (0.5) (0.2) (0.3) (0.2)

1 41 6 6.83 81 11 7.36 162 23 7.04
(1.7) (1.6) (1.2) (1.5) (1.2) (1.5)

Fun5 50 1,132 207 5.47 2,234 411 5.44 4,439 809 5.49
(1.3) (1.7) (2.1) (1.6) (2.1) (1.4)

100 2,254 412 5.47 4,435 825 5.38 8,809 1,638 5.38
(0.8) (0.9) (0.9) (2.1) (1.1) (2.1)

1 85 15 5.67 170 30 5.67 339 62 5.47
(1.8) (1.9) (2.1) (2.3) (1.1) (2.2)

Fun6 50 2,251 446 5.05 4,472 884 5.06 8,916 1,736 5.14
(1.2) (1.1) (1.5) (1.7) (2.3) (2.1)

100 4,476 891 5.02 8,745 1,764 4.96 18,483 3,537 5.23
(1.3) (2.1) (1.3) (1.1) (0.9) (1.1)

dimensional functions the execution time 32 - 48.45x is faster compared to the

floating point algorithm.

The profiling results of float and fixed point DE algorithm for optimizing Fun3

(Sphere) function are shown in Figure.4.2 and Figure.4.3 with NP and GMAX as

8 and 50 respectively. Table.4.5 shows that the execution time of floating point

operations dominate the execution time of other modules of DE algorithm like

mutation, crossover and selection. This table also shows that the random number

generator and remaining part of the algorithm consumes 42.87% and 40.22% of

the total execution time respectively, whereas fitness function evaluation module

consumes 10.39% of the total execution time. The remaining 6.52% of execution

time is for floating to fixed and fixed to float number conversion. Due to this,

fixed point implementation (32-bit data width) of the DE algorithm is chosen for

developing the hardware accelerator.

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 74

Figure 4.2: Software profiling results of floating point DE algorithm (GMAX=8
and NP=50) for Fun3

• Totoi Ttne (=onds) _ 0.03
• 5ef Ttne (=onds) _ 0.03
. ~oI Cok _ 65919

• Mlkecondsicol (5ef) _ 0.00
• Mlkecondsicol (Totoi) _ 0.00

====E~

Figure 4.3: Software profiling results of the fixed point DE algorithm (GMAX=8
and NP=50) for Fun3

Table 4.5: Profiling results: percentage of execution time of different DE modules
in PPC440 processor (Fun3, GMAX=50 and NP=8)

Type DE algorithm Objective function RNG Float Operations

Float 2.31% 0.44% 1.27% 95.98%

Fixed 40.22% 10.39% 42.87% 6.52%

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 75

Table.4.6 shows profiling results of three computational intense modules (DE

algorithm, objective function, and Random Number Generation (RNG)) of the

complete DE algorithm for different test functions with maximum generation and

population size as 1000 and 8 respectively. From this table, it is observed that the

algorithm (except fitness evaluation and RNG) takes more time in floating point

environment as compared to fixed point environment for solving each individual

functions. This is because of the complexity involved in floating point arithmetic.

The floating point arithmetic is carried out in the software FPU library of the

PPC440 embedded processor.

We have observed that in case of float DE IP, while optimizing the fitness function

(Fun6) in the co-design platform, where fitness function is evaluated in the software

and the remaining part of the algorithm is implemented in the hardware, the bus

communication time is approximately 106 msec. If the complete DE algorithm

along with fitness function is implemented in hardware, it takes approximately

128 msec. This concludes that bus communication overhead is dominating (i.e.,

82.8%) the overall hardware execution time. This is observed when the embed-

ded processor was operating at 200 MHz [103]. Similar kind of results observed

in cased of fixed DE. So to reduce the bus communication overhead, the total

DE algorithm including the fitness function evaluation can be implemented in the

embedded processor of the FPGA. This approach may result to a marginal accel-

eration in optimization time. Both these approaches will not give any additional

improvement in terms of the execution speed. So the alternate choice is to imple-

ment both the algorithm and fitness function evaluation in the hardware and use

it as a dedicated coprocessor.

Table 4.6: Profiling results of the software (SW) DE algorithm (GMAX=1000 and
NP=8)

DE algorithm Objective function RNG Float operations
Test Function SW float(ms) SW fixed(ms) SW float(ms) SW fixed(ms) SW float(ms) SW fixed(ms) SW float(ms)

Fun1 50 (1%) 30 (43%) 10 (0.21%) 10 (14%) 40 (0.85%) 30 (43%) 4,621 (97.88%)
Fun2 60 (1%) 30 (43%) 60 (0.81%) 10 (14%) 40 (0.54%) 30 (43%) 7,228 (97.83%)
Fun3 90 (2%) 30 (38%) 10 (0.19%) 10 (13%) 50 (0.93%) 40 (50%) 5,220 (97.20%)
Fun4 50 (1%) 40 (44%) 20 (0.26%) 20 (22%) 40 (0.51%) 30 (33%) 7,674 (98.58%)
Fun5 1,488 (5%) 1,245 (69%) 294 (0.97%) 255 (14%) 520 (1.72%) 303 (17%) 27,944 (92.38%)
Fun6 1,824 (6%) 1,330 (29%) 3,640 (11%) 2,983 (64%) 570 (1.72%) 334 (7%) 27,042 (81.75%)

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 76

4.5 Hardware architecture of DE algorithm

The block diagram and detail hardware architecture of DE algorithm is shown in

Figure.4.4 and Figure.4.5 respectively. The main advantage of this is the hardware

concurrency due to the pipelining of the architecture. It is designed in structural

hierarchy and having modules as Memory, initialization, Mutation, Crossover, Se-

lection, Random Number Generator and Fitness evaluation modules and their

controllers. A Control Finite State Machine (FSM) module is used to synchronize

the above mentioned modules as shown in Figure.4.5. Random number generation

(RNG) module uses a Linear Feedback Shift Register (LFSR) to generate pseudo

random numbers with in the range of 0 to 1. RNG module reads the random

seed and inputs to several other modules as shown in Figure.4.4. In floating point

DE IP, Floating Point Unit (FPU) module is used to perform the floating point

operations involved in various phases of DE algorithm. In FPU, operations like

addition, multiplication, division and comparison are performed using IEEE-754

supported Xilinx FPU core 4.0 [128], whereas in software these operations are per-

formed using soft FPU library or hard FPU in MB/PPC440. In case of fixed DE

IP these arithmetic operations are calculated on fixed point data path. The FSM

has five states i.e. idle (S0), initialization (S1), operation (S3/S4/S5), waiting

(S2) and reading states (S6). In the idle state, all modules are in reset condition.

The random nature of DE algorithm possess irregular timing for each stage of the

architecture pipeline, thus it requires handshaking to synchronize the communica-

tion between different modules. This handshaking brings out additional overhead

in pipeline operation in the form of wait states to finish the previous operation.

When inputs such as maximum number of generations (GMAX), population size

(NP), dimension (D), start and Enable are available at the initialization mod-

ule, FSM enables the memory module. For fixed/float DE initialization module,

population memory (8/16 Kbyte) and fitness memory (128/256 bytes) modules

are initialized by randomly generated population members and these are passed

to fitness evaluation module to get their fitness value and are stored in their re-

spective memories. Maximum values of NP and D are set to 32 for both float

and fixed DE. During the operation state, control FSM enables internal modules

(mutation, crossover, selection as well as memory module) and their controllers.

These modules are executing in pipelined manner iteratively until the maximum

number of iterations GMAX is reached. The final state of FSM is the reading state.

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 77

In this state the best fitness value is available at output register.

Mutation

Crossover

Selection

R
N

G
 M

odule

Fitness E
valuation

M
odule

Initialization

Population
M

em
ory

Fitness
M

em
ory

GMAX[31:0] NP[31:0]

C
o
n
t
r
o
l

F
S
M

32-bit

Reset Start

[31:0]

S1

S3

S4

S5

DE Core

[31:0]

Addr[11:0]

[31:0]

Mutant_vec[31:0]

Trial_vec[31:0]

Best_pop[31:0]

RNG_num

[31:0]

Pop_Data

Fit_Data

Fiteval_En

Init_En

Mut_En

Cr_En

Sel_En

Fiteval_En

D[31:0]Clock

Figure 4.4: Block diagram of fixed DE hardware

In the present work, we propose both fixed [103] and floating point DE archi-

tectures [7]. The difference between these two are only the Floating Point Unit

(FPU) core. In case of floating point DE core, the floating point core is used

for division, multiplication, and adder etc., whereas in fixed point DE core these

things are implemented with in the modules itself as shown in Figure.4.4. In float-

ing point IP core the population memory and fitness memory are high compared

to fixed point (32-bit) IP core. The details of individual modules of fixed/float

DE IP core is explained below.

4.5.1 Initialization module

The initialization module has two separate memories, one is for storing the pop-

ulation values (Population Memory) and other is for storing their corresponding

fitness function values (fitness memory) as shown in Figure.4.7. During the ini-

tialization state, population values of all the particles (i.e. of size NP × D) are

randomly generated within the range of [Xmin, Xmax], and stored in the popula-

tion memory of size (4/8Kbytes). The population values are accessed from the

population memory by using a 12/13-bit address. Each population member is of

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 78

ut

M
ut

at
io

n
O

pe
ra

tio
n

(A
+F

*(
B

-C
))

Po
pu

la
tio

n
M

em
or

y
 (8

K
B

)

R
eg

Fi
le

 A

M
U

X
 U

ni
t

Comparator
1

Reg 1

Counter 1

RNG

R
eg

Fi
le

 B
R

eg
Fi

le
 C

Reg 2

CR

C
om

parator 3

M
U

X

C
om

parator
2Reg 3

Index

Trial Vectors
Memory(256B)

Function
Evaluation

Module

Comparator 4

Control F S M

Trial
Vector

Fitness Reg

M
U

X

[63:0]

[63:0]

[31:0]

[31:0]

[31:0]

[31:0]

[31:0]

[31:0]

[31:0]

Best
Population

[63:0]

[63:0]

[63:0]

Mutation

Crossover

Selection

En

[63:0]

[63:0]

Start

Clk

Enable [6
3:

0]

FPU

Fi
tn

es
s

M
em

or
y

 (2
56

B
)

In
iti

al
iz

at
io

n

GMAX

NP

D

[63:0]
[63:0]

[63:0]

Mut_En Cr_En Sel_En

Init_En

Fit_En

Figure 4.5: Hardware architecture of float DE Algorithm

1/0

1/1

1/1 1/0

1/1

1/0

1/1
1/0

1/1

1/0

1/1

S5
Selection

S4
Crossover

S3
Mutation

S2
Gen<=Gmax

S6
Read_Op

S1
Init

S0
Idle

1/1 Gen=0

Figure 4.6: Control unit design for hardware implementation of DE algorithm

dimension D (number of variables) and each variable is of size 32/64 bits. The

maximum values of NP and D are set to 32. These values are input to the fitness

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 79

evaluation module and after evaluating the fitness function the fitness values (of

size 32/64-bit) are stored in the fitness memory of size (128/256 bytes). This

process is repeated for all the population members.

Population
Memory
4KBytes

Fitness
Memory

1Kbit
Xmin [31:0]

Xmax [31:0]

Adder

Subtractor Multiplier

Fitness Evaluation
Module

Init_En
Reset

Clock

32-bit

32-bit

32-bit

32-bit

[31:0]

RNG_num

S1

Fiteval_En

GMAX[31:0]

NP[31:0]

Addr[11:0]

D[31:0]

Figure 4.7: Initialization module

R
eg

Fi
le

A

M
U

X
 U

ni
t

Comparator
Unit

Multiplier

8-bit Counter

R
eg

Fi
le

B

R
eg

Fi
le

C

[31:0]

32-bit
32-bit

32-bit

RegFile
Enable

M
ut

an
t V

ec
to

r
R

eg
Fi

le

E
na

bl
e

OP_En

Mut_En

Reset

Clock

Subtract
or

Multipli
er

Delay

F

Adder

RNG_num

Enable

[31:0]

[31:0]
[31:0]

[31:0]

r1 r2 r3

S3

NP

Mutant_vec

Pop_Data

Figure 4.8: Mutation module

4.5.2 Mutation module

After the population is initialized, mutation operation is performed by the muta-

tion module. A mutant vector is generated for every target vector from the current

population. In this module a mutant vector of size (128/256) bytes is generated

for each population member. Three distinct vector indices r1, r2 and r3 are

generated in the range of 1 to NP by comparing the counter value with the value

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 80

of multiplier. These indices are connected to the select lines of a MUX unit. Three

distinct target vectors each of size (1/2) kbits are obtained from the MUX unit as

shown in Figure.4.8. Then the mutation operation is performed by difference of

any two of these selected three vectors scaled by a factor F and this difference is

added to third one to obtain the mutant vector of size (128/256) bytes. A mutant

vector is generated for all the population member of all dimensions.

C
R

M
U

X
[31:0]

R
eg

1

Mutant
Vector Index

OR
Tr

ia
l V

ec
to

rs

M
em

or
y

(1
K

bi
t)

[31:0]

RNG_num

Enable

Reset

Clock

C
om

pa
ra

to
r

1

C
om

pa
ra

to
r

2

M
ul

tip
lie

r

32-bit

RNG_num

[31:0]

S4

D 32-bit

Trial_vec

C
ou

nt
er 32-bit

Pop_Data

Mutant_vec

Cr_En

Figure 4.9: Crossover module

4.5.3 Crossover module

The crossover operation is mainly responsible to increase the diversity among

the mutant vectors. A trial vector is generated from the output of crossover

module with a crossover probability CR as shown in Figure.4.9. This crossover

rate controls the diversity of the population and helps the algorithm to escape

from the local optima [123, 129], and ensures that the trial vector gets at least one

vector from the mutant vector. The register Reg1 has a random number stored

in it. The output of Reg1 and CR are input to the comparator 2 module. The

multiplier output and index of population member are input to the comparator

1. The output of both comparator 1 and 2 are input to a logic OR gate. The

output of crossover module is either the mutant vector or the population vector

as selected by the MUX unit.

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 81

Comparator

M
U

X

Trial Vector
Fitness Reg

Function
Evaluation

Module

32-bit

[31:0]

B
es

t P
op

ul
at

io
n

32-bit

Enable

Sel_En

Reset

Clock

[31:0]

[31:0]

Fiteval_En 32-bit

From Fitness
Memory

S5

Best_pop

Trial_vec

Pop_Data

Figure 4.10: Selection module

4.5.4 Selection module

The output of crossover module is the trial vectors. These are input to the selection

module as shown in Figure.4.10. The fitness value of trial vector is evaluated

by using the fitness evaluation module and if it is less than the fitness of the

current population member then it selects the input as trial vector else the current

population member is selected as the new population member. The output of

multiplexer (MUX) is the updated value of the current population memory. This

process is repeated for all the iterations to improve the fitness of individuals and

the process is stopped when the maximum number of generations is reached.

4.5.5 Fitness Evaluation module

The Fitness module evaluates the fitness of each individual in accordance with

different fitness functions. For each generation, fitness values (32/64-bit) are eval-

uated for each population using fitness functions and the updated population and

fitness values are stored in the population and fitness memory (128/256 bytes) re-

spectively. In this work different test-bench functions as in Table.4.2/Appendix-A

are used for fitness evaluation.

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 82

4.5.6 Random Number Generator module

Random number generation (RNG) module has great importance for the proper

operation of the DE. A Linear Feedback Shift Register (LFSR) is used for gen-

erating random numbers, as it is easy to implement and it produces fairly good

pseudo-randomness. This module generates random numbers for the initial pop-

ulation module, selection module, crossover and mutation modules. The seed for

random number generator is programmable and it is initialized to a non-zero value.

If all zero value appears in the seed, then XOR operations continues to generate

zeros and output becomes always zero. The architecture of 32-bit LFSR with

maximum length polynomial X32 + X22 + X2 + X1 + 1 is shown in Figure.4.11.

This module generates 232 − 1 random numbers.

Shift Register
X1

Shift Register
X2

Shift Register
X22

Clock

Shift Register
X32

Shift Register
X21

RNG_num

Figure 4.11: Hardware architecture of 32-bit LFSR for random generator

4.5.7 Floating Point Unit

This module performs floating point operations required for mutation, crossover,

selection, fitness evaluation and random number generator modules. The opera-

tions like addition, multiplication, division, comparison and square-root are exe-

cuted on the hardware using the IEEE-754 supported Xilinx FPU core 4.0 [128]

as shown in Figure.4.5. It is also responsible for converting the data formats like

float to fixed, float to integer, double to float and vice versa. This core can be cus-

tomized for operation, word length, latency, and interface. It allows lower latency

as compared to FPU of embedded processor.

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 83

4.6 Programmable System on Chip (PSoC) plat-

form for DE algorithm

PSoC is a programmable integrated system that has configurable processors, pe-

ripherals, memories, custom IP on a single FPGA. The proposed PSoC platform

for implementing the DE algorithm is shown in Figure.4.12. PPC440 proces-

sor communicates with external peripherals such as DDR2, Block-RAM (BRAM)

Memory controllers, UART (RS-232), Timer and Interrupt controllers, JTAG Con-

troller, Clock generator via processor local bus (PLB). PPC440 is preferred over

Microblaze processor due to its high speed of operation and efficient resource uti-

lization. DDR2 and BRAM controllers are used for storing heap and stack of

program and data. UART is used for serial data transfer between the end user

and processor. Timer and interrupt controllers are used for profiling the appli-

cation. The clock generator provides necessary clock signals to all the modules

and peripherals. USB JTAG controller is used to download the bitstream from

host computer to FPGA board. PPC440 is directly coupled to the Auxiliary Pro-

cessing Unit (APU) controller, which provides flexible high-bandwidth interface

to DE Coprocessor via Fabric Coprocessor Bus (FCB). The coprocessor operates

as an extension to the PPC440 as explained in Section 2.5.4. The SU and APU of

floating and fixed DE IP core frequency is adjusted by a clock generator and set

to 33 MHz. However it can be increased up to Max-freq of IP core but need to

maintain the desired clock ratio of processor to PLB. The complete SoC system

is shown in Figure.4.12. It has the following features:

1. It has PPC440 hard-core and Microblaze soft-core processors with clock

frequency (200/125)MHz separately.

2. It consists of several logic resources such as 6-input look-up tables (LUTs),

DSP48E, and Slices which are useful to program signal processing algo-

rithms.

3. PLB is used as a shared local bus for all internal data communication be-

tween processor and peripherals except APU and DDR2.

4. Phased Locked Loop (PLL) or Digital clock manager (DCM) is used for

clock management in SoC system as well as for custom IP clocking (DE IP).

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 84

PowerPC440

Interrupt DDR

PLB Bus

Clock
Generator

33MHz
Hw_Clk

100MHz(SPLB_Clk)

Timer

INTR
BRAM

Controller

BRAM

MCI

Profile Timer

FCB Bus

Fitness
Evaluation

DE
CORE

COPROCESSOR

Fitness
Evaluation

DE
CORE

SLAVE ACCELERATOR

FCM

JTAG UART

Figure 4.12: PSoC platform for DE algorithm

5. The floating point DE IP core has separate FPU, RNG, Fitness evaluation

modules. These are connected to DE core internally. The descriptions of

these modules are explained in 4.5 sections.

In this platform, the developed DE IP cores (both fixed and float architec-

tures) are interfaced using SU and APU interfacing techniques, for evaluating

performances. To accelerate the execution time, in the first case, DE core is in-

terfaced as a SU to the embedded processor by using the shared bus, and in the

second case the DE IP is interfaced as an APU of the PPC440 processor. The

interface detail is shown in Figure.4.13. Both accelerators (either APU or SU)

use the same DE IP core with some modifications in the wrapper logic to make

it compatible with the bus interface. The DE IP has both the optimization al-

gorithm module and fitness function evaluation module. These two modules are

internally connected to minimize data transfer between DE algorithm and fitness

function evaluation. This also helps to minimize the number of read/write cycles.

1. In the APU interface the Master of PPC440 is connected to the slave of the

DE IP core through FCB.

2. In the SU interface of DE IP is connected to the processor through PLB .

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 85

 Bus2_IP_Data

IP2_Bus_Data

DE
WRAPPER

DE
Core

Clk

Start
Rst

D
Done

Gmax
NP

valid
Fitness

Slave Register 0

32-bit

I
P
I
F

32-bit

(32-bit)

DE IP CORE

32-bit

32-bit

32-Bit

32-bit

32-bit

32-Bit

32-Bit

Slave Register 132-Bit

Slave Register 232-Bit

Slave Register 332-Bit

Slave Register 432-Bit

32-Bit Slave Register 5

6-bit

Bus2_IP_RdCE

6-bit
Bus2_IP_WrCE

Bus2_IP_Clk

Bus2_IP_Reset

PLB Slave Interface

Figure 4.13: Design of slave peripheral in SoC

4.6.1 Interfacing the DE IP as a Slave Unit

The DE IP core is interfaced with the processor local bus through an Intellectual

Peripheral Interface (IPIF) as shown in Figure.4.13. The DE IP core has six

slave registers among which first four registers are for read/write operations of

Start, GMAX , NP , and D signals. The other two are used for reading output

from the DE core through wrapper control logic. The DE wrapper has a control

logic to receive the values of Start, GMAX , NP , and D from the processor using

Bus2IP Data bus. According to the control logic, once the Start signal is logic

high, it retains this state for four clock cycles before becoming logic low. When

all the inputs such as GMAX , NP , D, and Start are available to the DE core, it

starts execution. After the defined number of iterations set by GMAX , V alid signal

becomes logical high, and the slave register 5 reads the fitness value from the DE

core through IP2Bus Data. In this interface, Bus2IP RdCE and Bus2IP WrCE

are the associated read/write qualifiers respectively. For floating point DE IP,

the output data is interfaced to two slave registers because output data width is

64-bits and each register is of 32-bit width.

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 86

4.6.2 Interfacing the DE IP as an Auxiliary Processor Unit

The second method for developing the hardware accelerator is to build a fabric

coprocessor module of DE core and interface to the embedded processor (PPC440)

through APU interface. The hardcore APU controller bridges the processor APU

interface and the external FCM interface. APU controller along with FCM behaves

as a coprocessor. The extended instructions of PPC440 are used to communicate

”to and from” the APU [4]. Since the APU is independent of processor to pe-

ripheral interface, it does not add any extra overhead to the PLB. The PPC440

supports three primary types of instructions for using the APU [4]. In this work,

load/store instructions are used for accessing the APU. In this mode a maximum

of 128 bits of data can be transferred in a single clock cycle or it can be trans-

ferred as four sets of 32-bits. The details of interfacing DE IP with embedded

processor using APU interface is shown in Figure.4.14. The FCB bus is specifi-

cally targeted to host DE IP, which requires direct access and intervention of the

processor instructions.

DE_IP core

PowerPC
440

128-Bit

128-Bit

DE
Wrapper

Input_FIFO

Output_FIFO

32-Bit

DE_Input_En

DE_Input_EoD

DE_Input_Rdy

DE_Input_Data

DE_Ouput_En

DE_Output_EoD

32-Bit

DE_Output_Rdy

DE_Output_Data

32-Bit

32-Bit

Input_Data_En

Input_EoD

Input_Data

Input_Data_Rdy

Ouput_Data_En

Output_EoD

Output_Data

Output_Data_Rdy

APU_FCM_INSTRUCTION

APU_FCM_INST_VALID

APU_FCM_LOAD_VALID

APU_FCM_DECODED

APU_FCM_LOAD_DATA

FCM_APU_DONE

FCM_APU_SLEEP_NOT_READY

FCM_APU_LOAD_WAIT

FCM_APU_RESULT_VALID

FCM_APU_RESULT

Fabric Co-processor Module

Start

Gmax

NP

D

FCB_Clk

FCB_Reset
Idle

Done

Valid

Fitness

DE
Core

Figure 4.14: Interfacing of DE APU with PowerPC Processor

Figure.4.14 has two asynchronous FIFOs (depth of four and width of 32 bits)

interfaced at the input and output of the DE core. The input signal is processed

as a stream and each stream has four samples and three of which are used for

GMAX , NP and D. The remaining sample is used for checking whether the FIFO

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 87

is 50% full or not. In this architecture, Output Data and Input Data are two 32

bit width data buses for data input and output of the IP core respectively. The

working principle of the DE IP core is described as below.

1. PowerPC writes the input data GMAX , NP and D in three clock cycles.

The IP core receives data from the PowerPC, till the FIFO is full. This

is ensured by the control signal Input EoD. When the FIFO is 50% full

Input EoD becomes logical high.

2. When the FIFO is 50% full, it will enable DE Input En as logical high, and

when the IP core is ready for processing it will give a handshaking signal

DE Input Rdy as logical high. The FIFO sends the data to the IP core till

DE Input EoD is logical high.

3. When the IP core processes only single sample on the stream, it gives

DE Output En as logical high and this is acknowledged by the output FIFO

with handshaking signal DE Ouput Rdy. When this logical signal is high

then the IP core sends the processed samples to the output FIFO till

DE Output EoD is high.

4. When the output FIFO is full, FIFO will send back the data to APU of

PowerPC processor.

The APU wrapper contains two different modules namely IP APU and APU IP.

The APU IP module receives data from the processor and sends it to DE IP

whereas, the IP APU module receives the final solution from the DE IP core and

sends it to the processor (PPC440).

4.7 Experimental setup

In this work, the basic DE algorithm is considered for coprocessor implementation.

The DE algorithmic control parameters are tabulated in Table.4.2. The computa-

tion time/acceleration factor is considered as the main performance indicator to

measure the performance of the accelerators. The DE software code is ported into

the PPC440 processor using 32 bit fixed and floating point C code, later algorithm

is coded in Verilog language for implementing in the hardware. An Intellectual

Property (IP) core for DE algorithm is developed and simulated using Xilinx ISE

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 88

10.1, then a synthesized IP core is developed and subsequently a coprocessor is

designed for accelerating the DE algorithm. The performance of the coprocessor

is evaluated by optimizing six numerical benchmark functions used in CEC 2005

and 2010 competitions [126, 127]. Due to the empirical nature of DE algorithm,

evolution parameters are subject to modification. In the proposed coprocessor,

population size (NP), number of generations (GMAX) and dimension (D) can be

modified by the users through the embedded processor without redesigning the

hardware. The developed fixed/float DE IP cores are tested in two different con-

figuration of SoC. In first case, the effect of hard FPU in embedded (PPC440/MB)

processor is studied by optimizing three benchmark test functions (Fun2, Fun4,

Fun6). The DE software is tested in different processors i.e. X86 (3GHz), MB

and PPC440 (125MHz) with enabling/disabling hardware FPU library. In this

configuration, bus frequency is set to 100MHz and SU of float DE IP core is set

to 50MHz. In second case, the effect of SU, APU interfaces for both fixed & float

DE IPs are studied by optimizing six test bench functions tabulated in Table.4.2.

In this configuration, processor (PPC440) clock is set to 200MHz, bus frequency

is at 100MHz and the DE IP core is set to 33MHz. The performance of APU

interface is compared with the SU interface [7].

4.8 Results and Analysis

In this section simulation, resource, timing, convergence and power results of fixed

and floating DE IP are presented. Furthermore, power analysis in SoC platform

is presented.

4.8.1 Simulation results

This section presents simulation results of float/fixed DE IP core. The RTL code

of DE fixed and float architectures are simulated. The IPs are simulated in Xilinx

ISE 10.1 functional simulator.

For functional verification, fixed/float DE IP with interface wrapper logic and

the DE core are simulated using a test-bench and the results are compared with

DE processor results. The simulation results are shown in Figure.4.15 for Fun3

function with GMAX=1, NP=8 D=3. When DE Output Rdy signal is logic high,

the resultant fitness value is available at DE Output Data port which is in fixed

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 89

8

8

-1885-... ...-... ...-... ...-... ...-... ...-... ...-... ...-... ...-1885 8884

X 8884

72000000 ps 72400000 ps

Clock

Reset

Input_Data 8

Input_Data_En

Input_Data_Rdy

Input_End_of_Data

DE_Input_Data 8

DE_Input_En

DE_Input_Rdy

DE_IP_End_of_Data

DE_Output_Data -1885-... ...-... ...-... ...-... ...-... ...-... ...-... ...-... ...-1885 8884

DE_Output_En

DE_Output_Rdy

DE_OP_End_of_Data

Output_Data X 8884

Output_Data_En

Output_Data_Rdy

Output_End_of_Data

Entity:test_kk Architecture:behavior Date: Tue Dec 18 1:41:38 PM India Standard Time 2012 Row: 1 Page: 1

Figure 4.15: Functional simulation of Fun3 fixed DE IP Core (GMAX=1 and
NP=8)

point format. After logic high on DE Output Rdy signal, DE Input Rdy is high

due to scheduling for next set of GMAX , NP and D values. From the results,

it is observed that the IP core is consistently giving the same results. The DE

IP output is scaled and converted to single precision floating point format for

comparing the results with output of the processor. For functional verification of

float DE IP SU interface logic, DE IP core is simulated using same test bench and

the results are compared with DE IP core output as shown in Figure.4.16. From

this figure, it is observed that the interface logic of PLB (IP2bus data) and the

DE core output (out data) consistently give the same result.

Figure 4.16: Functional simulation of Fun3 float DE IP core(GMAX=1 and NP=8)

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 90

Table 4.7: Resource utilization of floating point DE IP core

Test BRAM DSP48E Slice Slice LUTs Slices LUT-FF MaxFreq
Function Registers Pairs (MHz)

Fun1 27(18%) 34(26%) 7576(16%) 10298(22%) 3588(32%) 5302(42%) 120.279
Fun2 6(4%) 84(65%) 10357 (23%) 14583(32%) 5257(46%) 7478(42%) 100.351
Fun3 6(4%) 20(15%) 7056(15%) 10306(23%) 3774(33%) 4668(36%) 98.502
Fun4 10(6%) 20(15%) 6963(15%) 9898(22%) 3065(27%) 5455(47%) 120.598
Fun5 21(14%) 20(15%) 6943(15%) 9646(21%) 3520(31%) 4635(38%) 101.491
Fun6 20(13%) 20(15%) 7129(15%) 9807(21%) 3486(31%) 5063(42%) 98.087

Table 4.8: Resource utilization of fixed point DE IP core

Test BRAM DSP48E Slice Slice LUTs Slices LUT-FF MaxFreq
Function Registers Pairs (MHz)

Fun1 3(2%) 61(47%) 2888(6%) 3936(8%) 1586(14%) 1711(33%) 39.33
Fun2 3(2%) 77(60%) 3150(7%) 7315(16%) 2546(22%) 2152(25%) 36.04
Fun3 3(2%) 20(15%) 3097(6%) 3928(8%) 1522(14%) 2031(40%) 67.04
Fun4 3(2%) 61(47%) 2883(6%) 4065(9%) 1625(14%) 1688(32%) 60.56
Fun5 10(6%) 42(32%) 2849(6%) 3667(8%) 1317(11%) 1890(40%) 64.67
Fun6 10(6%) 41(32%) 2886(6%) 3753(8%) 1485(13%) 1682(33%) 64.72

4.8.2 Synthesis results

The RTL code of floating and fixed point of DE IP cores are synthesized and re-

source utilization for optimizing different test functions are tabulated in Table.4.7

and Table.4.8 respectively. The resource utilization result shows that the fixed DE

IP core consumes lesser resources and lower operating frequency compared to float

DE IP. The resource utilization is more for optimizing higher dimension/complex

test bench functions.

4.8.3 Timing results

The timing specifications of the proposed float and fixed DE IP core is 33 MHz.

The maximum operating frequency of the synthesized float and fixed DE IP core

for optimizing different fitness functions is also tabulated in Table.4.7 and Ta-

ble.4.8 respectively. After synthesizing the fixed and float DE core, accelerators

are developed by using both (SU and APU) interfaces. The SoC platform is tested

by enabling and disabling FPU of the processor. The performance of the different

processors i.e. X86, PPC440 and Microblaze (MB) are evaluated and compared

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 91

Table 4.9: Average execution time of DE algorithm in X86, PPC440 and MB
processors

NP =8 NP=16 NP=32
Function GMAX X86(us) PPC440(ms) MB(ms) X86(us) PPC440(ms) MB(ms) X86(us) PPC440(ms) MB(ms)

(Std% 1) (Std%) (Std%)
1 3.04 0.23 6.18 5.12 0.35 12.74 10.08 0.78 23.84

(1.2) (1.3) (1.2)
Fun2 50 110.61 7.14 194.74 195.52 13.76 376.68 357.12 26.34 736.49

(1.8) (1.9) (1.8)
100 222.06 14.54 396.46 383.83 25.62 778.84 709.93 52.68 1,504.36

(2.2) (2.2) (2.1)
1 4.32 0.32 8.25 7.63 0.63 15.86 14.82 1.14 30.38

(1.1) (1.5) (1.5)
Fun4 50 175.23 10.35 245.12 286.22 19.68 468.48 491.24 38.38 916.78

(1.5) (2.5) (2.2)
100 296.31 20.48 484.26 525.91 39.28 936.18 995.56 77.62 1,818.96

(2.1) (2.6) (2.4)
1 60.24 3.27 60.85 113.52 7.24 131.58 224.04 14.82 260.86

(1.5) (1.2) (1.6)
Fun6 50 1,607.08 105.48 1,763.24 3,150.06 204.68 3,512.46 6,244.94 397.56 7,006.48

(2.3) (2.1) (2.3)
100 3,194.71 208.46 3,508.48 6,232.92 398.65 6,965.58 12,410.82 797.68 13,886.68

(2.6) (2.3) (2.6)

Table 4.10: Average execution time of float DE IP (50MHz) in SU configuration
with PPC440 and MicroBlaze based SoC (125MHz)

NP =8 NP=16 NP=32
Processor Function GMAX SW(ms) SW(ms) HW(ms) SW(ms) SW(ms) HW(ms) SW(ms) SW(ms) HW(ms)

NO FPU 2 FPU 3 NO FPU FPU NO FPU FPU
(Std%) (Std%) (Std%) (Std%) (Std%) (Std%) (Std%) (Std%) (Std%)

1 25.68 1.43 0.03 47.85 2.6 0.05 94.68 5.34 0.09
(1.9) (1.5) (0.8) (1.8) (1.5) (0.9) (1.6) (1.4) (0.7)

Fun2 50 800.54 50.42 0.87 1,539.67 96.75 1.57 2,999.25 189.58 3.04
(1.5) (0.7) (0.6) (1.9) (1.4) (0.6) (1.5) (1.2) (0.8)

100 1,646.86 100.95 1.70 3,136.74 192.47 3.12 6,134.56 377.42 6.08
(1.6) (0.8) (0.7) (1.7) (1.1) (0.7) (1.4) (1.0) (0.5)

1 33.36 2.13 0.05 64.16 4.04 0.09 125.87 7.85 0.18
(1.1) (0.6) (0.5) (1.3) (0.9) (0.3) (1.1) (0.6) (0.6)

PPC440 Fun4 50 1,026.52 72.11 1.50 1,928.86 138.52 2.83 3,793.64 270.82 5.55
(0.9) (0.7) (0.6) (1.6) (1.1) (0.5) (0.9) (0.5) (0.4)

100 2,050.82 144.74 2.70 3,901.74 274.83 5.64 7,635.51 538.94 11.04
(0.7) (0.6) (0.4) (1.5) (0.8) (0.4) (1.2) (0.8) (0.7)

1 267.35 28.67 0.55 533.69 58.14 1.09 1068.76 116.25 2.17
(1.2) (0.9) (0.7) (1.6) (0.8) (0.7) (1.5) (1.1) (0.3)

Fun6 50 7,109.82 828.78 14.64 14,136.76 1,647.18 29.17 28,122.65 3,269.43 58.17
(1.4) (0.8) (0.4) (1.7) (1.1) (0.5) (1.3) (1.0) (0.4)

100 14,134.92 1,645.26 29.05 28,054.82 3,273.28 57.82 56,457.82 6,503.38 115.41
(1.1) (1.0) (0.9) (1.8) (1.2) (0.8) (1.1) (0.8) (0.2)

1 143.82 140.72 0.03 273.51 267.83 0.05 532.78 530.24 0.09
(1.9) (1.2) (0.5) (1.9) (1.2) (0.6) (1.6) (1.1) (0.5)

Fun2 50 4,425.68 4,310.74 0.87 8,568.42 8,331.16 1.57 16,622.53 16,270.18 3.04
(2.0) (1.3) (0.7) (2.2) (1.1) (0.7) (1.8) (1.2) (0.7)

100 9,082.48 8,855.47 1.70 17,659.71 17,259.63 3.12 33,243.15 31,982.95 6.08
(2.1) (1.1) (0.6) (2.3) (1.8) (0.8) (2.0) (0.8) (0.4)

1 165.82 165.82 0.05 312.86 312.86 0.09 627.83 627.83 0.18
(1.2) (0.9) (0.8) (2.0) (0.9) (0.9) (1.5) (0.9) (0.3)

MB Fun4 50 5,029.42 5,029.42 1.50 9,531.85 9,531.85 2.83 18,656.74 18,656.74 5.55
(1.1) (0.8) (0.5) (2.1) (0.7) (0.6) (2.0) (1.3) (0.8)

100 10,036.73 10,036.73 2.70 19,083.46 19,083.46 5.64 35,876.97 35,876.97 11.04
(1.3) (0.9) (0.6) (1.9) (0.9) (0.7) (2.1) (1.5) (0.7)

1 1,256.38 1,253.43 0.55 2,519.58 2,513.82 1.09 5,020.64 5,010.19 2.17
(1.4) (0.6) (0.9) (2.2) (1.3) (0.6) (2.2) (1.8) (0.7)

Fun6 50 33,162.74 33,023.53 14.64 67,027.57 67,099.49 29.17 134,376.12 134,370.53 58.17
(1.5) (0.8) (0.7) (2.3) (1.1) (0.9) (1.9) (0.9) (0.5)

100 65,703.08 65,348.99 29.05 132,329.36 132,826.78 57.82 265,760.35 265,243.14 115.41
(1.7) (0.9) (0.5) (2.1) (1.5) (0.7) (1.8) (1.2) (0.6)

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 92

Table 4.11: Acceleration factor of float DE IP (50 MHz) in SU configuration with
PPC440 and MicroBlaze based SoC (125MHz)

NP =8 NP=16 NP=32
Function GMAX PPC PPC MB MB PPC PPC MB MB PPC PPC MB MB

NO FPU FPU NO FPU FPU NO FPU FPU NO FPU FPU NO FPU FPU NO FPU FPU

1 856.01 47.66 4794.00 4690.66 957.34 52.34 5470.21 5356.62 1052.33 59.33 5919.77 5891.55
Fun2 50 920.16 57.95 5086.98 4954.87 980.68 61.62 5457.59 5306.47 986.59 62.36 5467.93 5352.03

100 968.74 59.38 5342.63 5209.10 1005.3 61.68 5660.16 5531.93 1008.9 62.07 5467.62 5260.35

1 667.2 42.6 3316.40 3316.42 712.88 44.88 3476.22 3476.22 699.27 43.61 3487.94 3487.94
Fun4 50 684.34 48.07 3352.94 3352.94 681.57 48.94 3368.14 3368.14 683.53 48.79 3361.57 3361.57

100 759.56 53.60 3717.30 3717.30 691.79 48.72 3383.59 3383.59 691.62 48.81 3249.72 3249.72

1 486.09 52.12 2284.32 2278.96 489.62 53.33 2311.54 2306.25 492.51 53.57 2313.65 2308.84
Fun6 50 485.64 56.61 2265.21 2255.70 484.63 56.46 2297.82 2300.29 483.45 56.20 2310.05 2309.96

100 486.57 56.63 2261.72 2249.53 485.20 56.61 2288.64 2297.24 489.19 56.35 2302.74 2298.26

0

1000

2000

3000

4000

5000

6000

PPC (NO FPU) PPC (FPU) MB (NO FPU) MB (FPU)

Fun2

Fun4

Fun6

Figure 4.17: Comparison floating point DE in SU configuration on MB, PPC440
based SoC by enable/disable FPU (GMAX=100, NP=32)

in Table4.9. The average execution time for evaluating functions of different com-

plexities with different values of NP and GMAX is tabulated for 20 independent

runs. For performance evaluation, the DE floating point IP is executed with dif-

ferent population size (8, 16 and 32) and for different iterations (1, 50 and 100)

for three functions (Fun2, Fun4, Fun6). During this implementation the system

frequency is fixed at 125 MHz and float DE IP at 50 MHz. From the Table.4.9

it is observed that X86 processor takes less computational time as compared to

the embedded processor (PPC440, MB), which is quite obvious because of the

difference in their operating frequency. It is also observed that, although PPC440

and MB operates at same operating frequency, PPC440 takes significantly less

execution time.

The execution times of PPC440 and Microblaze embedded processor and float-

ing point DE (SU configuration) are evaluated and compared in Table 4.10. In

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 93

this table NOFPU and FPU refers that floating point arithmetics are executed

using soft FPU library and hard FPU respectively. SW refers that the algorithm is

executed in processor (processor execution time) and HW refers to accelerator exe-

cution time. The acceleration factor of the DE IP is evaluated as the ratio between

software execution time and hardware execution time. This is tabulated in Table

4.11. The tabulated result, reveals that FPU enabled PPC440 based SoC improves

execution speed by 8-18x compared to FPU disabled PPC440 based SoC, whereas

there is no significant increase of execution speed in case of Microblaze processor

based SoC. This trend remains valid for different population size and iterations.

These results conclude that for executing DE algorithm in software, FPU enabled

PPC440 processor gives superior performance compared to other configurations,

however it gives less acceleration factor. This is because, PPC440 processor takes

less execution time for executing the software DE algorithm. On the other hand

Microblaze processor gives high acceleration factor because it takes more execu-

tion time for executing the DE algorithm. This is illustrated in Figure.4.17.The

hardware acceleration of float and fixed DE IP using both APU and SU interfaces

are evaluated and compared. For performance comparison, the PPC440 and DE

IP frequency are set to 200MHz and 33MHz respectively. Initially floating and

fixed point software DE algorithm are ported into PPC440 processor. Then the

float DE IP is interfaced using APU and SU interfaces. The acceleration achieved

for both the interfaces of float DE IP are tabulated in Table.4.12 and Table.4.13

respectively. Similarly the fixed DE IP is interfaced using APU and SU interfaces

and the acceleration factors are tabulated in Table.4.14 and Table.4.15 respec-

tively. From the results it is observed both accelerators (SU and APU) of fixed or

float DE IP results same acceleration factor. However when we compare SU/APU

of float DE IP with SU/APU fixed DE IP, for lower dimension functions fixed DE

IP shows higher acceleration as compared to float DE IP. This is shown in Fig-

ure.4.18a, whereas for higher dimension functions float DE IP outperforms fixed

DE IP as shown in Figure.4.18b (Fun6).

1Standard deviation
2Soft FPU
3Hard FPU

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 94

Table 4.12: Average execution time of float DE IP (33MHz) in APU configuration
with PPC440 based SoC (200MHz)

NP =8 NP=16 NP=32
Float APU Float APU Float APU

Test Function GMAX SW(ms) HW(ms) Acceleration SW(ms) HW(ms) Acceleration SW(ms) HW(ms) Acceleration
(Std%) (Std%) factor (Std%) (Std%) factor (Std%) (Std%) factor

1 4.91 0.05 90.93 9.44 0.09 107.27 18.36 0.16 116.20
(2.8) (1.1) (2.2) (1.4) (1.2) (1.0)

Fun1 50 181.05 2.05 88.36 332.37 3.43 96.87 641.81 6.18 103.87
(0.9) (1.2) (0.4) (0.7) (0.2) (0.2)

100 363.17 4.13 87.98 673.21 5.11 131.69 1,301.32 8.00 162.71
(0.5) (1.0) (0.4) (1.5) (0.2) (0.2)

1 8.01 0.06 145.64 15.02 0.09 166.89 28.73 0.17 170.00
(2.2) (1.5) (2.3) (1.3) (1.2) (1.4)

Fun2 50 264.53 1.51 175.77 491.39 3.31 148.41 940.12 5.37 175.23
(0.9) (1.2) (0.4) (0.5) (0.2) (0.3)

100 536.05 3.12 171.70 994.24 6.71 148.15 1,897.45 10.77 176.26
(0.5) (0.7) (0.3) (0.5) (0.2) (0.2)

1 5.12 0.06 81.27 10.13 0.11 91.26 19.88 0.21 96.98
(2.7) (1.1) (1.3) (1.8) (0.6) (1.3)

Fun3 50 199.54 2.43 82.15 371.94 4.14 89.82 720.03 7.58 95.02
(0.6) (1.1) (0.3) (0.5) (0.2) (0.3)

100 397.91 4.89 81.44 740.14 6.02 122.93 1,432.64 10.57 135.54
(0.5) (1.1) (0.3) (0.6) (0.2) (0.2)

1 9.99 0.09 113.52 19.36 0.16 122.53 38.38 0.31 125.84
(2.2) (1.6) (1.2) (1.9) (0.6) (0.9)

Fun4 50 305.79 3.08 99.35 584.59 5.46 107.11 1,145.25 10.29 111.28
(0.4) (1.2) (0.2) (0.7) (0.2) (0.3)

100 612.92 6.13 100.02 1,178.46 10.86 108.50 2,304.13 20.44 112.73
(0.3) (1.2) (0.2) (0.7) (0.2) (0.6)

1 41 0.34 119.53 81 0.67 121.80 162 1.32 122.91
(1.6) (0.8) (1.5) (0.3) (1.5) (0.2)

Fun5 50 1,132 10.83 104.53 2,234 20.75 107.67 4,439 40.77 108.89
(1.7) (0.2) (1.6) (0.1) (1.4) (0.1)

100 2,254 21.64 104.17 4,435 41.22 107.60 8,809 80.99 108.77
(0.9) (0.1) (2.1) (0.1) (2.1) (0.1)

1 85 0.36 239.44 170 0.92 184.58 339 3.54 95.74
(1.9) (0.6) (2.3) (0.3) (2.2) (0.2)

Fun6 50 2,251 11.16 201.79 4,472 27.55 162.34 8,916 97.61 91.34
(1.1) (0.4) (1.7) (0.1) (2.1) (0.1)

100 4,476 22.21 201.57 8,745 54.86 159.41 18,483 193.83 95.36
(2.1) (0.5) (1.1) (0.1) (1.1) (0.1)

The acceleration factor of fixed DE IP with fixed point software algorithm is

also compared and found that the acceleration is 2-3x for lower complex/dimension

functions and 25-27x for higher dimension functions. These results are valid for

both SU and APU of fixed DE as shown in Figure.4.18. These tables also reveal

that the fixed/ float accelerator enhances the execution speed of the algorithm

significantly for higher dimensional complex functions. For analysis purpose, the

acceleration factor is calculated for both the designed accelerators (SU and APU)

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 95

Table 4.13: Average execution time of float DE IP (33MHz) in SU configuration
with PPC440 based SoC (200MHz) [7]

NP =8 NP=16 NP=32
Float SU Float SU Float SU

Test Function GMAX SW(ms) HW(ms) Acceleration SW(ms) HW(ms) Acceleration SW(ms) HW(ms) Acceleration
(Std%) (Std%) factor (Std%) (Std%) factor (Std%) (Std%) factor

1 4.91 0.05 94.42 9.44 0.09 109.77 18.36 0.15 120.79
(2.8) (1.1) (2.2) (1.4) (1.2) (1.0)

Fun1 50 181.05 2.09 86.50 332.37 3.47 95.76 641.81 6.23 103.10
(0.9) (1.2) (0.4) (0.7) (0.2) (0.2)

100 363.17 4.22 86.14 673.21 6.92 97.26 1,301.32 9.17 141.85
(0.5) (1.0) (0.4) (1.5) (0.2) (0.2)

1 8.01 0.05 151.13 15.02 0.09 166.89 28.73 0.17 174.12
(2.2) (1.5) (2.3) (1.3) (1.2) (1.4)

Fun2 50 264.53 2.13 124.37 491.39 3.57 137.64 940.12 6.45 145.78
(0.9) (1.2) (0.4) (0.5) (0.2) (0.3)

100 536.05 4.22 127.03 994.24 7.08 140.39 1,897.45 12.78 148.48
(0.5) (0.7) (0.3) (0.5) (0.2) (0.2)

1 5.12 0.06 80.00 10.13 0.11 90.45 19.88 0.21 96.98
(2.7) (1.1) (1.3) (1.8) (0.6) (1.3)

Fun3 50 199.54 2.50 79.91 371.94 4.20 88.60 720.03 7.65 94.12
(0.6) (1.1) (0.3) (0.5) (0.2) (0.3)

100 397.91 4.95 80.40 740.14 8.37 88.43 1,432.64 13.97 102.55
(0.5) (1.1) (0.3) (0.6) (0.2) (0.2)

1 9.99 0.09 114.83 19.36 0.16 121.76 38.38 0.31 125.84
(2.2) (1.6) (1.2) (1.9) (0.6) (0.9)

Fun4 50 305.79 3.12 97.92 584.59 5.50 106.35 1,145.25 10.32 111.03
(0.4) (1.2) (0.2) (0.7) (0.2) (0.3)

100 612.92 6.17 99.37 1,178.46 10.92 107.93 2,304.13 20.49 112.45
(0.3) (1.2) (0.2) (0.7) (0.2) (0.6)

1 41 0.34 119.53 81 0.67 121.80 162 1.32 122.54
(1.6) (0.8) (1.5) (0.3) (1.5) (0.2)

Fun5 50 1,132 10.76 105.17 2,234 20.65 108.20 4,439 41.07 108.08
(1.7) (0.2) (1.6) (0.1) (1.4) (0.1)

100 2,254 21.38 105.45 4,435 41.43 107.05 8,809 81.63 107.92
(0.9) (0.1) (2.1) (0.1) (2.1) (0.1)

1 85 0.36 237.43 170 0.92 183.98 339 3.55 95.39
(1.9) (0.6) (2.3) (0.3) (2.2) (0.2)

Fun6 50 2,251 11.16 201.74 4,472 27.75 161.16 8,916 98.03 90.96
(1.1) (0.4) (1.7) (0.1) (2.1) (0.1)

100 4,476 22.56 198.44 8,745 57.88 151.09 18,483 194.61 94.97
(2.1) (0.5) (1.1) (0.1) (1.1) (0.1)

of float DE for different dimensions of Fun5 and Fun6 functions. The software

and hardware execution time of these two functions are evaluated for dimensions

8, 16, and 32. The results are tabulated in Table.4.17. From this table, it is

clear that for Fun6 function, the acceleration factor increases with the dimension.

However, the same is not true for Fun5 because of the simplicity of the function.

So it can be concluded that the acceleration factor increases with the complexity

of the function to be optimized. The same trend of acceleration is also noticed

in case of the SU based accelerator and fixed DE accelerator, so it is not tabulated.

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 96

0

10

20

30

40

50

60

Fun1 Fun2 Fun3 Fun4 Fun5 Fun6

Float(sw)_Fix(sw)

Fix(sw)_Fix(hw)(PLB)

Fix(sw)_Fix(hw)(APU)

(a) Float DE vs. all accelerators

0

20

40

60

80

100

120

140

160

180

200

Fun1 Fun2 Fun3 Fun4 Fun5 Fun6

Float(sw)_Fix(sw)

Float(sw)_Fix(hw)(APU)

Float(sw)_Fix(hw)(PLB)

Float(sw)_Float(hw)(APU)

Float(sw)_Float(hw)(PLB)

(b) Fixed DE vs. fixed accelerator

Figure 4.18: Comparison of acceleration factors of fixed and float DE IP in SU
and APU configurations (GMAX=100 and NP=32)

4.8.4 SoC Resource and Power results

The SoC resource results of fixed and float DE IP for both SU and APU interfaces

for Fun4 are tabulated in Table.4.17 and Table.4.18 respectively. It is observed

that the resource utilization is independent of the interface, whereas the SoC with

floating point core consumes more resources compared to fixed point IP as ex-

pected. We further carried out power analysis of the developed SoC system for

both the interfaces of both DE IPs. The power analysis of floating point DE IP

with APU and SU interfaces are tabulated in Table.4.19 and Table.4.20 respec-

tively, whereas for fixed point DE IP, it is tabulated in Table.4.21 and Table.4.22

respectively. These tables present details of power consumed by different modules

of SoCs. The total APU/SU power is the sum of power consumed by DE IP,

FIFO/IPIF, RAM, and remaining logic. System power refer to the sum of power

consumed due to peripheral IPs of the design. The power analysis due to the re-

sources of both float and fixed DE IP SoC systems are also tabulated in Table.4.23

and Table.4.24 respectively. From these tables, it can be concluded that power

consumption is independent of interface type. The float DE SoC consumes less

power while optimizing low dimension functions (Fun4) as shown in Figure.4.19a,

whereas fixed DE SoC consumes lesser power for optimizing complex functions

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 97

Table 4.14: Average execution time of fixed DE IP (33MHz) in APU configuration
with PPC440 based SoC (200MHz)

NP =8 NP=16 NP=32
Fixed APU Fixed APU Fixed APU

Test Function GMAX SW(ms) HW(ms) Acceleration SW(ms) HW(ms) Acceleration SW(ms) HW(ms) Acceleration
(Std%) (Std%) factor (Std%) (Std%) factor (Std%) (Std%) factor

1 0.15 0.05 3.00 0.26 0.1 2.60 0.52 0.2 2.60
(2.8) (1.1) (2.2) (1.4) (1.2) (1.0)

Fun1 50 5.38 2.13 2.53 9.69 3.9 2.48 18.82 7.6 2.48
(0.9) (1.2) (0.4) (0.7) (0.2) (0.2)

100 10.38 4.27 2.43 19.33 8.21 3.94 37.51 15.2 2.47
(0.5) (1.0) (0.4) (1.5) (0.2) (0.2)

1 0.18 0.05 3.60 0.31 0.1 3.10 0.61 0.2 3.05
(2.2) (1.5) (2.3) (1.3) (1.2) (1.4)

Fun2 50 5.97 2.23 2.68 10.85 4.06 2.67 19.82 7.8 2.54
(0.9) (1.2) (0.4) (0.5) (0.2) (0.3)

100 11.96 4.43 2.70 21.64 8.11 2.67 39.26 15.6 2.52
(0.5) (0.7) (0.3) (0.5) (0.2) (0.2)

1 0.16 0.07 2.29 0.31 0.13 2.38 0.61 0.26 2.35
(2.7) (1.1) (1.3) (1.8) (0.6) (1.3)

Fun3 50 5.83 2.6 2.24 11.08 4.9 2.26 21.64 9.57 2.26
(0.6) (1.1) (0.3) (0.5) (0.2) (0.3)

100 11.62 5.3 2.19 22.08 9.9 2.23 43.16 19.06 2.26
(0.5) (1.1) (0.3) (0.6) (0.2) (0.2)

1 0.23 0.08 2.88 0.45 0.15 3.00 0.84 0.3 2.80
(2.2) (1.6) (1.2) (1.9) (0.6) (0.9)

Fun4 50 7.08 2.9 2.44 13.48 5.4 2.50 26.46 10.5 2.52
(0.4) (1.2) (0.2) (0.7) (0.2) (0.3)

100 14.11 5.8 2.43 26.94 10.9 2.47 52.77 21.1 2.50
(0.3) (1.2) (0.2) (0.7) (0.2) (0.6)

1 6 0.5 12.00 11 0.8 13.75 23 1.6 14.38
(1.6) (0.8) (1.5) (0.3) (1.5) (0.2)

Fun5 50 207 11.9 17.39 411 23.5 17.49 809 46.6 17.36
(1.7) (0.2) (1.6) (0.1) (1.4) (0.1)

100 412 23.7 17.38 825 46.7 17.67 1,638 92.6 17.69
(0.9) (0.1) (2.1) (0.1) (2.1) (0.1)

1 15 0.6 25.00 30 1.2 25.00 62 2.3 26.96
(1.9) (0.6) (2.3) (0.3) (2.2) (0.2)

Fun6 50 446 16.4 27.20 884 32.4 27.28 1,736 64.5 26.91
(1.1) (0.4) (1.7) (0.1) (2.1) (0.1)

100 891 32.6 27.33 1,764 64.4 27.39 3,537 128 27.63
(2.1) (0.5) (1.1) (0.1) (1.1) (0.1)

(Fun6) as shown in Figure.4.19b. Finally, the power analysis of complete SoC

system with float/fixed DE IPs for optimizing Fun6 is tabulated in Table.4.25.

.

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 98

Table 4.15: Average execution time of fixed DE IP (33MHz) in SU configuration
with PPC440 based SoC (200MHz)

NP =8 NP=16 NP=32
Fixed SU Fixed SU Fixed SU

Test Function GMAX SW(ms) HW(ms) Acceleration SW(ms) HW(ms) Acceleration SW(ms) HW(ms) Acceleration
(Std%) (Std%) factor (Std%) (Std%) factor (Std%) (Std%) factor

1 0.15 0.06 2.68 0.26 0.10 2.65 0.52 0.19 2.68
(2.8) (1.1) (2.2) (1.4) (1.2) (1.0)

Fun1 50 5.38 2.16 2.50 9.69 3.96 2.45 18.82 7.64 2.46
(0.9) (1.2) (0.4) (0.7) (0.2) (0.2)

100 10.38 4.36 2.38 19.33 8.02 2.41 37.51 15.19 2.47
(0.5) (1.0) (0.4) (1.5) (0.2) (0.2)

1 0.18 0.06 3.10 0.31 0.11 2.90 0.61 0.21 2.90
(2.2) (1.5) (2.3) (1.3) (1.2) (1.4)

Fun2 50 5.97 2.18 2.73 10.85 4.10 2.65 19.82 7.82 2.54
(0.9) (1.2) (0.4) (0.5) (0.2) (0.3)

100 11.96 4.39 2.72 21.64 8.12 2.67 39.26 15.56 2.52
(0.5) (0.7) (0.3) (0.5) (0.2) (0.2)

1 0.16 0.07 2.32 0.31 0.13 2.31 0.61 0.27 2.28
(2.7) (1.1) (1.3) (1.8) (0.6) (1.3)

Fun3 50 5.83 2.62 2.23 11.08 4.92 2.25 21.64 9.55 2.27
(0.6) (1.1) (0.3) (0.5) (0.2) (0.3)

100 11.62 5.26 2.21 22.08 9.85 2.24 43.16 19.07 2.26
(0.5) (1.1) (0.3) (0.6) (0.2) (0.2)

1 0.23 0.08 2.88 0.45 0.16 2.90 0.84 0.30 2.76
(2.2) (1.6) (1.2) (1.9) (0.6) (0.9)

Fun4 50 7.08 2.93 2.42 13.48 5.37 2.51 26.46 10.48 2.52
(0.4) (1.2) (0.2) (0.7) (0.2) (0.3)

100 14.11 5.89 2.40 26.94 10.77 2.50 52.77 20.97 2.52
(0.3) (1.2) (0.2) (0.7) (0.2) (0.6)

1 6 0.41 14.74 11 0.81 13.53 23 1.64 14.03
(1.6) (0.8) (1.5) (0.3) (1.5) (0.2)

Fun5 50 207 12.06 17.17 411 23.74 17.31 809 47.12 17.17
(1.7) (0.2) (1.6) (0.1) (1.4) (0.1)

100 412 23.98 17.18 825 47.16 17.49 1,638 93.58 17.50
(0.9) (0.1) (2.1) (0.1) (2.1) (0.1)

1 15 0.59 25.42 30 1.18 25.40 62 2.37 26.19
(1.9) (0.6) (2.3) (0.3) (2.2) (0.2)

Fun6 50 446 16.66 26.78 884 32.98 26.80 1,736 65.57 26.48
(1.1) (0.4) (1.7) (0.1) (2.1) (0.1)

100 891 33.07 26.94 1,764 65.73 26.84 3,537 130.07 27.19
(2.1) (0.5) (1.1) (0.1) (1.1) (0.1)

Table 4.16: Timing results for different dimensions in APU configuration of fixed
DE IP (NP=32) with PPC440 based SoC

D =8 D=16 D=32
Test Function GMAX SW(ms) HW(ms) Acceleration SW(ms) HW(ms) Acceleration SW(ms) HW(ms) Acceleration

(Fixed) factor (Fixed) factor (Fixed) factor
500 2711 160 16.94 4781 258 18.53 8612 464 18.56

Fun5 1000 5502 320 17.19 9811 516 19.01 18182 929 19.57
2000 11086 642 17.26 19872 1031 19.27 36654 1857 19.73
500 3199 171 18.70 6942 309 22.46 17500 655 26.71

Fun6 1000 6477 346 18.71 14215 627 22.67 35526 1321 26.89
2000 13637 695 19.62 29200 1263 23.12 71683 2651 27.04

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 99

Table 4.17: SoC Device Utilization of floating point DE IP for Fun4

APU SU
Resource Type Used Utilization Used Utilization

PLL ADVs 1 16% 1 16%
DSP48Es 20 15% 20 15%

JTAGPPCs 1 100% 1 100%
PPC440s 1 100% 1 100%

BlockRAM 26 17% 26 17%
Slices 7190 64% 7230 64%

Slice LUTs 18921 42% 18954 42%
Slice Registers 12097 27% 13433 28%
LUT FF Pairs 8953 40% 9203 41%

Table 4.18: SoC Device utilization of fixed DE IP for Fun4

APU SU
Resource Type Used Utilization Used Utilization

PLL ADVs 1 16% 1 16%
DSP48Es 61 47% 61 47%

JTAGPPCs 1 100% 1 100%
PowePC440s 1 100% 1 100%
BlockRAM 9 6% 9 6%

Slices 3431 30% 3326 29%
Slice LUTs 7259 16% 7272 16%

Slice Registers 6270 13% 6336 14%
LUT FF Pairs 3615 36% 3829 39%

0

20

40

60

80

100

120

140

Total
Power

System PPC Interface DE Wrapper RAM FPU
Logic

Float_APU

Float_PLB

Fixed_APU

Fixed_PLB

Po
w

er
(m

w
)

(a) Power results of Fun4

0

20

40

60

80

100

120

140

Total
Power

System PPC Interface DE Wrapper RAM FPU
Logic

Float_APU
Float_PLB
Fixed_APU
Fixed_PLB

Po
w

er
(m

w
)

(b) Power results of Fun6

Figure 4.19: Power results of all the accelerators for Fun4 and Fun6

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 100

Table 4.19: Power analysis of floating DE APU accelerator in SoC (mW)

Test Function Total Power System PPC APU DE FIFO RAM FPU Logic
Fun1 107.47 44.99 44.74 18.17 7.35 1.47 5.11 4.21
Fun2 114.55 44.99 44.74 23.59 12.57 1.47 5.10 5.17
Fun3 100.17 44.99 44.74 10.77 2.41 1.47 5.10 5.17
Fun4 100.57 44.99 44.74 11.38 2.69 1.47 4.98 2.23
Fun5 123.29 45.00 44.74 38.35 2.72 19.17 8.1 3.58
Fun6 122.85 45.00 44.74 33.55 2.72 19.17 8.1 3.41

Table 4.20: Power analysis of floating DE SU accelerator in SoC (mW)

Test Function Total Power System PPC SA DE IPIF RAM FPU Logic
Fun1 102.96 45.18 44.74 13.26 4.65 1.47 4.98 2.15
Fun2 107.62 45.21 44.74 17.76 6.98 1.47 4.18 4.20
Fun3 104.18 45.17 44.74 14.65 4.05 1.47 4.98 4.12
Fun4 104.06 45.16 44.74 14.36 5.22 1.47 4.98 3.50
Fun5 127.41 45.19 44.74 37.93 4.88 19.38 8.10 5.52
Fun6 128.27 45.19 44.74 36.54 4.02 19.38 8.10 5.25

Table 4.21: Power analysis of fixed DE APU accelerator in SoC (mW)

Test Function Total Power System PPC APU DE FIFO RAM Logic
Fun1 129.50 45.00 44.74 4.30 2.69 0.30 0.18 1.13
Fun2 106.34 45.01 44.74 17.07 10.80 0.35 0.32 5.60
Fun3 94.91 45.00 44.74 5.65 3.10 0.31 0.38 1.84
Fun4 96.06 45.00 44.74 6.72 3.82 0.34 0.33 2.57
Fun5 99.37 45.00 44.74 10.15 4.91 0.32 2.93 1.98
Fun6 99.76 45.00 44.74 10.27 4.92 0.31 2.87 2.05

Table 4.22: Power analysis of fixed DE SU accelerator in SoC (mW)

Test Function Total Power System PPC SA DE IPIF RAM Logic
Fun1 130.21 45.23 44.74 3.93 2.36 0.31 0.19 1.03
Fun2 130.22 45.21 44.74 17.87 12.24 0.27 0.18 5.14
Fun3 94.99 45.21 44.74 5.44 2.87 0.29 0.38 1.87
Fun4 96.06 45.14 44.74 6.66 3.83 0.29 0.33 2.50
Fun5 99.23 45.20 44.74 9.74 4.82 0.29 2.93 1.89
Fun6 100.27 45.28 44.74 10.50 5.21 0.30 2.92 2.05

4.8.5 Convergence results

Although the objective of this work is intended to improve the execution speed

and not the quality of the solution, convergence tests are also performed to verify

the functionality of the DE algorithm by using two accelerators. The convergence

graphs of DE algorithm for Fun2 and Fun3 test functions are plotted in Fig-

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 101

Table 4.23: Power analysis of resources in complete SoC using floating DE IP in
APU and SU configurations (mW)

Fun1 Fun2 Fun3 Fun4 Fun5 Fun6
Resources PLB APU PLB APU PLB APU PLB APU PLB APU PLB APU

Clocks 121.67 120.31 134.57 129.97 121.55 122.14 133.04 135.06 136.87 142.80 139.83 138.86
Logic 2.09 3.16 2.46 3.78 2.62 2.97 1.201 1.505 2.06 2.18 2.09 2.29

Signals 5.66 8.92 7.51 12.92 6.45 8.63 3.56 3.86 5.27 5.69 5.59 5.13
IOs 3298.22 3298.22 3298.22 3298.22 3298.22 3298.22 3298.22 3298.22 3298.22 3298.22 3298.22 3298.22

BRAMs 11.78 11.95 11.77 11.95 11.76 11.73 11.76 11.76 3.208 3.208 3.208 3.208
DSPs 0.08 0.08 2.55 2.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PPC440s 44.74 44.74 44.74 44.74 44.74 44.74 44.74 44.74 44.74 44.74 44.74 44.74
PLLs 34.62 34.62 34.62 34.62 34.62 34.62 34.62 34.62 34.62 34.62 34.62 34.62

Total Quiescent Power 1849.34 1850.19 1854.11 1854.67 1849.64 1851.43 1842.44 1852.31 1834.14 1860.64 1840.04 1852.31
Total Dynamic Power 3520.00 3523.15 3537.56 3539.63 3521.11 3527.69 3524.64 3530.94 3459.64 3561.46 3496.18 3530.94

Total Power 5369.34 5373.35 5391.67 5394.31 5370.75 5379.11 5337.12 5383.25 5319.78 5422.10 5539.72 5383.25

Table 4.24: Power analysis of resources in complete SoC using fixed DE IP in APU
and SU configurations (mW)

Fun1 Fun2 Fun3 Fun4 Fun5 Fun6
Resources PLB APU PLB APU PLB APU PLB APU PLB APU PLB APU

Clocks 107.69 107.55 108.14 100.79 94.79 104.57 96.91 103.20 95.89 94.61 101.04 106.13
Logic 1.72 1.51 1.70 4.41 2.49 2.42 2.35 2.23 2.26 2.19 2.44 2.32

Signals 4.14 3.53 4.17 12.65 4.50 4.50 4.42 4.54 4.93 5.14 5.59 5.19
IOs 3298.22 3298.22 3298.22 3298.22 3298.22 3298.22 3298.22 3298.22 3298.22 3298.22 3298.22 3298.22

BRAMs 3.62 3.62 3.62 4.20 4.20 4.20 4.20 4.20 7.35 7.35 7.35 7.35
DSPs 0.83 0.83 0.83 1.74 0.44 0.40 1.74 1.70 1.33 1.33 1.54 1.54

PPC440s 44.74 44.74 44.74 44.74 44.74 44.74 44.74 44.74 44.74 44.74 44.74 44.74
PLLs 69.24 69.24 69.24 36.12 36.12 34.62 34.62 34.62 34.62 34.62 34.62 34.62

Total Quiescent Power 1937.78 1937.51 1937.90 1841.77 1839.93 1842.54 1840.79 1842.48 1841.37 1841.06 1843.04 1849.27
Total Dynamic Power 3532.47 3531.51 3532.92 3502.51 3485.15 3498.60 3488.35 3494.64 3490.50 3489.35 3496.18 3501.26

Total Power 5470.25 5469.03 5470.83 5349.59 5325.09 5337.40 5329.14 5337.12 5331.86 5330.40 5339.72 5345.53

Table 4.25: Power analysis of SoC system for Fun6 consisting floating/fixed point
DE IP

Resource Type Float Power(mW) Fixed Power(mW)
Total SoC system 122.85 96.06

PowerPC440 44.74 44.74
APU 33.55 6.72

Clockgen 38.35 38.35
DDR2 5.40 5.47

Compact flash 0.24 0.25
RS232 Uart 1 0.15 0.12

PLB 0.02 0.02
proc sys reset 0 0.05 0.04

xps timer 0 0.04 0.04
xps timer 1 0.03 0.03
xps intc 0 0.02 0.02

xps bram cntlr 0.01 0.01
xps bram 0.00 0.00

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 102

0 20 40 60 80 100
10

0

10
1

10
2

No. of Iterations

F
it

ne
ss

 V
al

ue

Float SW
Float APU
Fixed APU

(a) Comparison of float and fixed DE result in APU configuration for
Fun2

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

10
2

No. of Iterations

F
it

ne
ss

 V
al

ue

Float SW
Float APU
Fixed APU

(b) Comparison of float and fixed DE result in APU configuration for
Fun3

Figure 4.20: Convergence rate comparison of float and fixed DE in APU configu-
ration with software

ure.4.20a and Figure.4.20b respectively. These figures compare the convergence

results of floating point DE algorithm implemented in embedded processor (as

SW) with floating and fixed APU hardware accelerator (as HW). It is observed

that, the floating point hardware results approximately same quality of solution

and convergence rate as the processor whereas, the fixed point APU gives the

solution of less quality because of its bit-width limitation.

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 103

4.9 Case Study: Infinite Impulse Response (IIR)

system identification using DE algorithm

Designing of an adaptive digital IIR filter is an emerging research area for many

years. This has been used in different practical applications [130, 131, 132]. How-

ever, the IIR filter does not guarantee satisfactory performance if the coefficients

are not chosen accurately. It has also been recognized that error surface is usually

non-quadratic and multi-modal with respect to filter coefficients. So, to improve

the robustness of the design, evolutionary algorithms have been applied, for the de-

sign of IIR filter [118, 120, 121, 122, 133]. In these approaches, the filter coefficients

are updated using evolutionary techniques which help to avoid local minimas in

multimodal error surface. The objective of this case study is to verify the perfor-

mance of developed DE accelerator by implementing the IIR system identification

task in FPGA.

Unknown plant

Adaptive IIR
filter

DE algorithm

x(n)

d(n)

e(n)

_

Σ

Σ

Additive Noise
η(n)

yo(n)
+

+

y(n)
+

Figure 4.21: Block diagram of DE based IIR system identification

Multiply-
Accumulate

x(n)

Enable

Reset

Clock

Coefficient
Memory

Coeff_in

Data_in
Data

Memory

b

Controller

Multiply-
Accumulate

+

_
y(n)

O
ut

pu
t M

em
or

y

Figure 4.22: Hardware architecture for IIR filter

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 104

The block diagram of IIR based system identification using DE algorithm is

shown in Figure.4.21. The coefficients of IIR filter are obtained by minimizing

the difference between the output of the filter and unknown system using DE

algorithm [119]. The system can be modeled using an IIR filter as equation 1.

y0(n) +
M∑
i=1

biy(n− i) =
L∑
i=0

aix(n− i) (4.1)

where x(n), y(n) are the input and output signal of the IIR filter respectively, M

(≥ L) is the filter order and ai, bi are the filter coefficients. The transfer function

of adaptive IIR filter is

HM(z) =

[
Â(z)

B̂(z)

]
(4.2)

where Â(z) and B̂(z) are the feed-forward and feed-back coefficients of adaptive

IIR filter respectively.

Â(z) =
L∑
i=0

âiz
−i (4.3)

B̂(z) = 1 +
M∑
i=1

b̂iz
−i (4.4)

where âi and b̂i are the estimated feed-forward and feed-back coefficients of

the model respectively. If the transfer function of unknown plant is same as the

transfer function of adaptive filter, then the plant is identified by using the model

HM(z). This identification task is formulated as an optimization problem with

cost function J(
∧
φ) as

J(
∧
φ) =

1

N

N∑
n=1

e2(n) =
1

N

N∑
n=1

(d(n)− y(n)))2 (4.5)

where d(n) and y(n) are desired and actual responses of the plant and N is

number of samples; The model coefficient vector
∧
φ can be

∧
φ = [a0a1.....aLb1.....bM]T (4.6)

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 105

The overall output of the plant is

y(n) = y0(n) + η(n) (4.7)

where η(n) is additive white Gaussian noise and

y0(n) = F−1[Hs(z).X(z)] (4.8)

where Hs(z) and X(z) are the Z-transform of unknown plant and input signal

respectively.

For verification purpose a 3rd order plant is modeled as a 3rd order IIR filter

with transfer function as

HM(z) =
a0 + a1z

−1 + a2z
−2

1− b1z−1 − b2z−2 − b3z−3
(4.9)

The transfer function of the 3rd order plant is given by [119]

Hs(z) =
−0.2− 0.4z−1 + 0.5z−2

1− 0.6z−1 + 0.25z−2 − 0.2z−3
(4.10)

Figure 4.23: Experimental test setup for system identification

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 106

0 50 100 150 200 250 300 350 400 450
10−6

10−5

10−4

10−3

10−2

10−1

100

No. of Iterations

F
itn

es
s

V
al

ue

Fixed DE HW

Float DE SW
Float DE HW

Figure 4.24: Convergence graphs of system identification problem in the HW and
SW

Table 4.26: Estimated parameters of 3rd order IIR filter in SoC

Parameter Actual value Estimated value
a0 -0.20 -0.200
a1 -0.40 -0.400
a2 0.50 0.499
b1 0.60 0.600
b2 -0.25 -0.249
b3 0.20 0.199

The hardware architecture of IIR based system identification task is given in

Figure.4.22. The filter coefficients are obtained from the DE hardware IP. This

algorithm is coded in C-language and implemented in the PowerPC processor

of Xilinx Virtex-5 FPGA, subsequently it is implemented on hardware and the

estimated coefficients using the fixed/float DE IPs using APU are tabulated in

Table.4.26, corresponding to 500 iterations. A snapshot of the real time test bed is

shown in Figure.4.23. The error convergence graph is shown in Figure.4.24. This

figure shows that the quality of the solution using both software on embedded

processor and hardware IPs are comparable. Furthermore, the execution time

for performing system identification in embedded processor and both hardware

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 107

Table 4.27: Timing results for system identification problem using fixed and float
DE IP in APU configuration

IP system GMAX HW(ms) SW(ms) Acceleration
factor

50 0.376 4.201 11.16
100 0.738 8.525 11.54
200 1.496 18.041 12.06

Fixed DE 300 2.216 26.551 11.98
400 2.952 34.371 11.64
500 3.707 45.681 12.32
50 0.370 60.113 162.46

Float DE 100 0.733 117.543 160.35
200 1.459 233.191 159.82
300 2.185 353.795 161.91
400 2.911 462.092 158.73
500 3.637 583.047 160.30

DE IPs for different number of generation is tabulated in Table.4.27. HW (sec)

and SW (sec) denotes the execution time using the hardware accelerator and

embedded processor in seconds respectively. From this table, it is observed that

the developed floating point accelerator gives an acceleration of approximately

150-160x compared to the software implementation, whereas fixed DE IP gives an

acceleration of 11x.

4.10 Conclusions

In this case study, hardware accelerators for computing fixed and floating point

DE algorithm are developed. To avoid the bus overhead, the complete DE al-

gorithm is implemented in hardware instead of partitioning the design into soft-

ware and hardware. These accelerators are interfaced with the PPC440 using

both Auxiliary Processing Unit (APU) and Slave Unit (SU) interface techniques.

The performance of these interface techniques are studied by optimizing a set of

benchmark functions. From the experimental results it is concluded that i) the

designed accelerators are giving more acceleration compared to hardware/ soft-

ware co-design technique, ii) the acceleration factor remains same for optimizing

test functions using APU and SU interfaces; However this statistic may change for

different applications, iii) The execution time of DE accelerator is compared with

CHAPTER 4. COPROCESSOR FOR DE ALGORITHM 108

X86, Microblaze, PPC440 processor with different Floating Point Unit (FPU) con-

figurations; It is concluded that hard FPU enabled processor configuration is the

optimum configuration for executing the task in the processor. However the hard-

ware accelerator (SU/APU) gives more acceleration compared to the hard/soft

FPU enabled processor, iv) it has also been demonstrated that the acceleration

factor increases with the increase in complexity and dimension of the fitness func-

tion irrespective of interfacing technique, v) the resource utilization and power

analysis concluded that the power consumption and resource utilization are same

for both interfaces. However, floating point DE IP consumes more power and

resources compared to fixed point DE IP, vi) further IIR system identification is

solved using the developed fixed & float DE IP and it attained an acceleration of

approximately 11x and 150x respectively. In future, this design approach can be

used for implementing evolutionary embedded applications.

Chapter 5

Coprocessor for H.264 video

decoder

H.264
Decoder

PPC440

PLB bus0

Virtex-5FX70T-1136
FPGA

M
C
I

DCR
INTR

PLB bus1

DCR bus

DVI ControllerDDR2SDRAM

UART

Clock Generator

Central
DMA

Entropy
Decoder

Q-1T--1DBFCurrent
Frame

Intra

MCReference
frame

Reorder

.h264

FCB

109

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 110

This chapter presents the third case study of the thesis. In this case study

a hardware accelerator for H.264 video decoder is developed by using the open

source reference hardware design. The accelerator is interfaced as an Auxiliary

Processing Unit (APU) with the embedded PPC440 processor in System on Chip

(SoC) platform. The complete SoC is validated in Xilinx Virtex-5 development

board using different test video sequences and the execution time of accelerator is

evaluated.

5.1 Introduction

A video codec is a procedure that allow encoding, that allows encoding and de-

coding of digital video. Encoding results in compression and decoding results in

decompression of digital video. Standardization of video coding formats play a

vital role in digital video applications. For playing 30/60 frames per second (fps)

video sequences with a resolution of 1920 x 1080 pixels (High Definition Digital

Television (HDTV)), with 24 bits per pixel, the required transmission rate is 1.5

billion bits per second (1.5 Gbps) and it would take 112 billion bytes (112 GB)

to store a video of 10 minutes duration [5]. Thus compression of video data is

required. In general the digital video captured from a camera undergoes certain

pre-processing stages before encoded into bit format. This bit format file is ei-

ther stored or transmitted through the channel. In the receiver section, a decoder

decodes the video and displays in the monitor after an optional post-processing

steps. Several video coding standards were developed by aggregating the tech-

nical algorithms to efficiently compress the video data. H.264 (Advanced Video

Coding (AVC) or MPEG-4 part 10) is the latest video coding standard defined by

International Telecommunication Union (ITU) [134]. Apart from H.264, different

standards such as H.261 (1990), MPEG-1 Video (1993), MPEG-2 Video (1994),

H.263 (1995, 1997), MPEG-4 Visual (1998) have been adapted for video coding

[135]. Still newer standards such as Scalable Video Coding (SVC) and Multi View

Coding (MVC) and latest is High Efficiency Video Coding (HEVC) are evolving

for better compression. These standards were developed for different network,

mobile broadcast applications.

The applications are ranging from video telephony, Compact Disk (CD), broadcast

of Standard Definition Television (SDTV) or High Definition Television (HDTV).

The modern applications like video conferencing, mobile television demands new

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 111

video coding standard, which can provide enhanced video compression, low latency

and streaming of video data [135, 136]. In order to meet these requirements, H.264

video codec is developed. The compression efficiency of H.264/AVC standard is up

to two times more compared to MPEG-2 standard. It also can save 25 to 45% and

50 to 70% of bit rates compared with MPEG-4 and MPEG-2 codecs respectively

[137, 138]. Although H.264 has better compression efficiency, lower communication

channel bandwidth, the main bottleneck is its computational complexity. Due to

complexity of the algorithm involved in H.264, the general purpose processors fail

to decode the high-resolution video in real time at a rate of 30 fps. This becomes

even more critical while decoding video data in the embedded systems, where the

constraint is not limited to only speed but also includes power consumption and

chip area [139]. Thus, there is a demand for implementing the H.264 decoder

in complete hardware which can fulfill the speed, power and area requirements.

Hence in this work a hardware accelerator of H.264 decoder is developed.

According to the AVC standard the video coding process is divided into sev-

eral stages or modules. Each stage can be designed separately in the hardware to

optimize speed, area and power consumption. The AVC modules are parsing and

entropy decoding, Context Adaptive Variable Length Coding (CAVLC), Inverse

Discrete Cosine transform (IDCT) for Inverse Transformation (IT), Inverse Quan-

tization (IQ), Intra-frame Prediction (IP), Motion Compensation (MC) followed

by Deblocking Filter (DBF).

In the SoC platform, different hardware interfacing approaches are presented

in chapter 2, for accelerating a design. The coprocessor solution gives higher

amount of acceleration as compared to other methods, however the acceleration

is decreasing with more interactions between the coprocessor and the embedded

processor [12]. So in order to limit these interactions a complete H.264 IP with all

the modules and internal memories is developed in a single Intellectual Property

(IP) core. In this case study we have used the video decoder architecture reported

in [140, 141] which is targeted for ASIC platform. As a starting point we have con-

sidered the same open-source H.264 video decoder for developing the coprocessor

for FPGA platform with modifications listed in section 5.4. The objective of this

case study is to develop a coprocessor of entire H.264 decoder and implement in

a FPGA based system on chip (SoC) platform. The developed H.264 IP is inter-

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 112

faced to the PPC440 embedded processor using APU interface in SoC platform.

The developed coprocessor is tested in Xilinx SoC platform with different video

sequences and performance of the coprocessor is evaluated by comparing the exe-

cution time of the software H.264 decoder implemented in processor and hardware.

In this work the computational complexity of each module is analyzed, by

software profiling of the reference video decoder [142] (JM 9.4) targeted to mobile

TV application [176 X 144, 30 fps]. Profiling results help to identify the critical

module of the design. Since general purpose processors are not suitable for this

kind of application, PPC440 embedded processor is used for profiling the H.264

decoder. The xil profiler an instruction level profiler is used for profiling the

software H.264 decoder [143, 144]. The profiling results show that MC, DBF, are

computation-intensive modules, which dominates 70% of the total execution time

of the decoder [145, 146].

5.2 Related works

The literature reports the hardware development of specific module such as IDCT,

DBF, MC to accelerate the H.264 decoder. However limited works are reported

about the development of H.264 coprocessor in FPGA. A prototype implementa-

tion of H.264 decoder using FPGA is also reported [147]. Agostani et al., presented

a main profile decoder of H.264 decoder with HW/SW codesign methodology in

Virtex-II Pro FPGA and later they implemented the design in ASIC chip [148].

Different modules of H.264 decoder CAVLC, IDCT, MC, DBF are interfaced to

the Processor Local Bus (PLB) in SoC platform and subsequently an ASIC for

H.264 decoder is developed [148, 149, 150, 151]. Similarly FPGA based H.264

decoder is also developed for Common Intermediate Format (CIF) and HD reso-

lutions [152]. KeXu et al., proposed an open source (RTL-code) baseline profile

decoder of H.264 decoder and implemented in both ASIC and Virtex-4 FPGA for

Quarter Common Intermediate Format (QCIF) resolution [153]. This decoder uses

self adaptive pipeline for intra/inter modules. This enables the decoder to decode

30 fps at 1.5MHz [140, 141]. Warsaw et al., and Chen.et.al., developed a HDL

based H.264 decoder which decodes 30 fps on both FPGA and ASIC technologies

[154, 155]. Werda et al., developed a baseline profile decoder on DSP processor

TMS-320C6416. This decoder also achieved 30 fps [156]. Huan et al., developed

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 113

an embedded platform using ARM CPU core running at 130 MHz, SRAM, multi-

ple dedicated accelerators for (IDCT, CAVLC, MC, DBF), with 32-bit Advanced

High Performance Bus (AHB) bus interface and an external memory interface.

The decoding process can be partitioned either to execute software on the ARM

CPU or on the dedicated hardware running in parallel with CPU (software and

hardware). The acceleration due to hardware is 2x time faster than software and

even after this speedup, the decoder platform is unable to decode QCIF video

sequences more than 10 fps [157]. Starnbeck et al., developed a coprocessor to

accelerate the execution speed of H.264 decoder for Digital Video Broadcasting

(DVB) [158]. Along with this there are different methodologies such as Bluespec

Verilog for developing H.264 decoder [159, 160, 161]. Kthiri et al., developed a

SoC system using PPC440 with Xenomai Real-Time Operating System (RTOS)

with a coprocessor for DBF [146]. Table.5.1 briefly tabulates some of the related

works important to the thesis work.

Table 5.1: Review of existing literature on H.264 decoder

Work profile Decoder Approach Technology
[148] Main H.264 SoC HW-SW co-design Virtex-II Pro FPGA & ASIC
[141] Baseline H.264 IP HW Virtex4 FPGA &ASIC
[156] Main H.264 IP SW TMS DSP processor

[152, 154] Main H.264 IP HW FPGA
[155, 162] Main H.264 IP HW ASIC

[157] Baseline H.264 SoC HW-SW co-design FPGA-ARM platform
[158] Main H.264 IP HW-SW co-design FPGA

Present work Baseline H.264 SoC HW-SW co-design Virtex-5 FPGA

5.2.1 Profiles and Levels

H.264 standard defines mainly a set of three profiles (Baseline, Main, High), each

support a particular set of modules such as CAVLC, IDCT, MC etc., and also

each specify the requirements of encoder or decoder that complies with a par-

ticular profile [135, 137]. The Baseline profile supports intra, inter-coding (using

I-slices and P-slices) and entropy coding with CAVLC techniques. The Main pro-

file supports interlaced video, inter-coding using B-slices with weighted prediction

and entropy coding using Context Adaptive Binary Arithmetic Coding (CABAC)

technique. The Extended profile does not support interlaced video or CABAC

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 114

but enable efficient switching between coded bit-streams (SP and SI slices) and

has improved error resilience. Applications of the Baseline profile include video

telephony, video conferencing and wireless communications; potential applications

of the Main profile include television broadcasting and video storage; and the Ex-

tended profile may be particularly useful for streaming media applications. Fig-

ure.5.1 shows the H.264 decoder profiles and their features. From this figure, it is

clear that the Baseline profile is a subset of the Extended profile, but not of the

Main profile. Performance limits for codecs are defined by a set of Levels, each has

limits on parameters such as sample processing rate, picture size, coded bit-rate

and memory requirements [5].

Interlace
MBAFF
PAFF

CABAC
I slices

P slices

CAVLC

Slice
Groups

Redundant
slices

ASO Arbitrary
Slice ordering
FMO Flexible
Macroblock
Ordering

B slices

SI / SP slices

Data
partitioning

Main profile

Extended profile
(so-called streaming profile)

Baseline profile
(low latency)

Figure 5.1: H.264 decoder profile configurations [5]

5.2.2 Encoder (forward path)

In the video compression unit, the raw input image is in RGB format. As human

eyes are more sensitive to brightness than the color informations, the video signals

are processed in YCbCr format (Y is the luminance component which represent the

brightness information whereas Cr and Cb are the chrominance components which

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 115

represents the color information). In the compression system, an image is divided

into macro blocks. As human eyes are more sensitive to luminance information,

the idea is to use higher resolution for the luminance component (more samples)

and smaller resolutions for the chrominance components. According to the target

applications three types of sub-sampling i.e. 4:4:4, 4:2:0 and 4:2:2 techniques

are used. In the baseline profile decoder 4:2:0 format is used in which both the

luminance and the chrominance components of the signal are sub-sampled by a

factor of 2 in both horizontal and vertical direction. Therefore, a macroblock

consists of one block of 16 x16 pixels for the luminance component and two blocks

of 8 x 8 pixels for the color components [5].

Fn
(Current
Frame)

Select Intra

Entropy

T Reorder

Q-1

ME

MC
Reference
Frames)

Intra
Prediction

DBF

'
1−nF

'
nF

T-1

Q

NAL

'
nD'

nuF

Inter Prediction

(Reconst
Frame)

nD nX

Figure 5.2: H.264 encoder [5]

The video encoder shown in Figure.5.2 includes two data flow paths, a) for-

ward path and b) reconstruction path. The data flow path in the video decoder

is shown in Figure.5.3. Before examining the details of H.264 decoder, the main

steps in encoding and decoding a frame of video signal is briefly explained below.

An input frame Fn is processed in units of macroblocks. Each macroblock is en-

coded using either intra or inter mode. For each frame, the current macroblock

is predicted using either the neighboring macro blocks of same frame or reference

frame. In intra mode, prediction of macroblock is from the neighboring macro

blocks of current frame that have been previously encoded, decoded and recon-

structed (uF ′n is the unfiltered samples are used to form prediction). In case

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 116

of the inter mode, prediction is carried out by motion-compensated prediction

using a reference frame. In the Figure.5.2, the reference frame is shown as the

previous encoded frame F ′n−1. A macroblock partition (in inter mode) may be

chosen from a selection of past frames that have already been encoded, recon-

structed and filtered. The predicted macroblock/frame is subtracted from the

current macroblock/frame to produce a residual (difference) block D′n that is

transformed (using a block transform), quantized to give Xn followed by reorder-

ing and entropy encoding. The entropy-encoded coefficients, together with control

informations (prediction modes, quantizer parameter, motion vector information,

etc.,) form a Network Abstraction Layer (NAL) for transmission or storage [5].

Encoder (Reconstruction path)

For encoding and transmitting each macroblock, the encoder decodes each mac-

roblock in a frame and the reconstructed frame is set as the reference frame for

further predictions. The coefficients Xn are scaled (Q−1) and inverse transformed

(T−1) to produce a difference block D′n as shown in Figure.5.2. The prediction

block is added to D′n to create a reconstructed block uF ′n (a decoded version of

the original block; u indicates that it is unfiltered). A Deblocking filter (DBF) is

applied to reduce the effects of blocking distortions and the reconstructed reference

frame F ′n is created from a series of macroblocks [5].

(Reference Frame)

Intra
Prediction

T-1 Q-1
(Current Frame) DBF

Reorder

Entropy
decode

MC NAL1−nF'

nF' nuF' nD'
 X n

Figure 5.3: H.264 decoder [5]

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 117

5.2.3 Decoder

The decoder receives the compressed bitstream from the NAL unit, the entropy

decoder decodes the data elements to produce a set of quantized coefficients Xn as

shown in Figure.5.3. These are scaled and inverse transformed to give D′n. Using

the control informations of the bitstream, the decoder creates a prediction block,

identical to the original prediction block formed in the encoder. This predicted

block is added to D′n to produce uF ′n which is filtered to reconstruct the frame

F ′n.

5.3 FPGA implementation of H.264 decoder

A key design step for implementing the H.264 decoder is the selection of imple-

mentation strategy, optimizing at different design levels, and properly partitioning

the decoding tasks between different blocks. A video codec has to decode the video

signal greater than or equal to 30 fps. In order to speed up the execution of the

decoder, the time-consuming operations like interpolation in MC and DBF should

be carefully optimized or implemented in the hardware. It is difficult to achieve

higher acceleration in case of general purpose processor. This is because of sequen-

tial processing nature of the processor. In case of the DSP processors decoders

need special instructions with parallel processing capability to speed-up some crit-

ical modules of the H.264 decoder [146, 163, 164]. In case of FPGA, mapping of

video processing algorithms into its resources provide inherent concurrency and

parallelism in execution results to superior acceleration over DSP, GPP hardware

[148].

The importantstep towards H.264 decoder realization is to prototype it in the

FPGA and use it in commercial products. Implementation of H.264 in FPGA

faces multiplelevels of complexity because, real-time video compression requires

high throughput, larger memory bandwidth etc. In the present work a dedicated

hardware/coprocessor for H.264 is developed in FPGA for achieving higher accel-

eration. Table.5.2 shows that as video resolution increases operating frequency of

the decoder also increases. This enhances the memory requirements from (QCIF

(176x144) to HDTV 1080p (1920x1088)) [6].

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 118

Table 5.2: Frequency requirement for processing 30 fps for different video resolu-
tions [6]

Resolution Macroblock perframe) number of Macroblock frequency
QCIF 99 2,970 1.78MHz
CIF 396 11,880 7.13MHz
4CIF 1,584 47,520 28.5MHz
720p 3,600 108,000 64.8MHz
1080p 8,160 244,800 146.9MHz

Generally a video decoder requires a lot of resource for hardware implemen-

tation for faster processing of macroblocks. The key aspect of H.264 hardware is

memory management and pipeline processing. The decoder demands more mem-

ory access since the macroblocks are stored in the memory. So memory manage-

ment is a critical task while designing the hardware for H.264 decoder [149, 165].

Accessing large memory introduces more routing delay that results in low oper-

ational frequency. This greatly effects the throughput of the design. So, FPGA

based design can fulfill these demands with a trade-off between area and speed.

A complete video decoding system comprises of four parts, a memory for stor-

ing encoded bitstream, bitstream controller, reconstruction data-path, and a dis-

play controller, as depicted in Figure 5.4. Bitstream data is fetched by the bit

stream controller according to the structure of the encoded bitstream (each video

standard has its own specific bitstream structure). The bitstream parser pro-

cesses the syntax elements ranging from frame level to macroblock level, while

the CAVLC decoder handles transformed/quantized residues. In this process each

macroblocks is decomposed into 16 luma of 4x4 blocks and 8 chroma (Cb and Cr)

of 4x4 blocks. Intra/ Inter prediction modules are used for prediction of the macro

block, according to the current macroblock mode (i.e. 4x4 or 8x4 or 16x16 etc.,).

After intra/inter prediction, the destination of predicted 4x4 blocks are controlled

by pipeline synchronizer; if it arrives earlier than the residual 4x4 block, it is put

into the prediction buffer and waits for residual arrival; once residuals are recov-

ered by Q−1 and T−1 decoder they are added with predicted residual 4x4 blocks

and filtered using DBF. The final decoded macroblock pixels are sent to display

engine [140]. The reconstructed video is usually in YCbCr (YUV) format. The

decoded YUV video sequence is sent to display controller, which converts YUV

format into RGB format for display.

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 119

PARSER

CAVLC T-1 Q-1

GLOBAL
CONTROL

+

INTRAINTER

REFERENCE
MEMORY

DBF

MUX

BITSTREAM
RAM

NAL
SYNTAX

ELEMENTS

FRAME
BUFFER 0

FRAME
BUFFER 1

4:2:0

4:4:4
CONVERTER

YUV

RGB
CONVERTER

DVI
CONTROLLERDISPLAY

DISPLAY CONTROLLER

RECONTRUCTION DATAPATHBITSTREAM CONTROLLER

Figure 5.4: H.264 Hardware Block diagram

The considered reference hardware architecture uses pipelining for processing

of both 16x16 and 4x4 blocks [6]. The whole decoder is designed by pipelining

4x4 block, except deblocking filter which requires pipelining of 16x16 macroblock.

However 16x16 block processing suffers several disadvantages such as it requires

intermediate buffer of several mega bytes size to save temporary results of the

whole 16x16 macroblock. Also, there is no data reuse inside each macroblock

because the entire macroblock is processed as a whole [166]. The modules apart

from the DBF, intra prediction, MC, IDCT uses 4x4 block pipeline have three

major advantages: first, it matches the smallest block size specified in H.264/AVC

standard, second, temporary memory, such as registers or internal memory used

to back up intermediate data can be substantially smaller than 16x16 (in fact it

uses 4x4). This saves computational time to store the samples. At last, it exploits

the data reuse capability between neighboring 4x4 blocks inside a macroblock.

The disadvantage of 4x4 pipeline is the degradation of system throughput. This

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 120

is because the prediction need to be synchronized for every 4x4 block. However,

this can be partially compensated by several other design techniques, such as self-

adaptive pipeline and parallel architecture [167, 168]. In order to reuse the 4x4

blocks, the processing order of this block can be either of 1x4 column decoding or

4x1 row decoding [6]. In the considered design 1x4 column decoder is used for Q−1,

T−1 and intra/inter prediction whereas for sum (Adder) block, 4x1 row order is

used. Verilog code of the decoder is used and synthesized in Virtex-5 development

board. The important features of the considered open-source decoder is given

below [141].

� It supports H.264AVC baseline decoding of QCIF resolution.

� It uses pipelining, parallel architecture along with data reuse mechanism to

improve the throughput of decoder.

� It uses clock gating technique to reduce power consumption.

� It uses self adaptive hybrid pipeline architecture for inter/intra prediction

module with hierarchical memory organization.

� It uses Multi functional processing elements (MFPE) and seed method for

planar mode prediction in intra prediction.

� Inter prediction uses Variable Block Shape (VBS) with pipelined luma/chroma

interpolators.

5.3.1 Bitstream controller

The bitstream controller of H.264/AVC baseline profile decoder is shown in Fig-

ure.5.4. It comprises of bitstream buffer, parser and hybrid length decoder. The

hybrid length decoder has three dedicated decoders for intra-prediction mode se-

lection, motion vectors and Boundary Strength (BS) calculation for DBF.

5.3.1.1 Bitstream buffer

The bitstream buffer is shown in the bitstream controller (Figure.5.4). It serves

as a bridge between the off-chip bitstream RAM and the on-chip hybrid length

decoder. It keeps the current 128-bit bitstream to be processed. The addressing of

bitstream buffer is done in bitwise fashion instead of byte wise, because the input

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 121

bitstream has been coded as hybrid length without a fixed byte boundary [169].

The bitstream buffer is modeled as a circular buffer having two hardware processes

which manage the communication between the off-chip RAM, the bitstream buffer

and the hybrid length decoder [6].

5.3.1.2 Bitstream parser

The bitstream parser fetches encoded bitstream from the bitstream buffer and

parsing of the bitstream is handled by a control FSM [168, 169, 170]. The con-

trol FSM identifies the codeword and subsequently boundary of each codeword

is identified, further the whole codeword is extracted and decoded according to

the syntax of control information. The codeword has the informations about the

header and residuals. CAVLC decoding is performed for coded residuals while

fixed/variable-length decoding is performed on the control data. Intra and inter

prediction mode and motion vector are derived from both current decoded syn-

tax value and neighboring coding information available in the control information.

The control informations have also the BS of each macroblock required for proper

decoding the video.

5.3.1.3 Hybrid length decoder

The hybrid-length decoder consists of three different modules, namely Exp-Golomb,

fixed-length and CAVLC. Once the bitstream buffer gets the data it sends to the

hybrid length decoder. In this module (as per the input codeword type) the

heading-one-detector is invoked for identifying the starting position of the code-

word by detecting first appeared 1 inside the current syntax element [6]. CAVLC

module is invoked when syntax of residual information is appeared, while for syn-

tax other than residual, either Exp-Golomb or fixed-length decoding is performed.

When explicitly encoded syntaxes are decoded, control parameters and dependent

variables are decoded subsequently [168].

5.3.2 Reconstruction data path

The reconstruction data path of H.264/AVC baseline profile decoder is shown

in Figure.5.4. It comprises of intra/inter prediction, DBF modules with on chip

memory controllers. Predicting pixels in sequential fashion degrades the system

performance, so in order meet the real time decoding requirements of 30fps at

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 122

1.5MHz, adaptive pipelines and parallel processing of the data path is employed in

the architecture [168]. Intra/Inter prediction module, is the major computational

bottle neck in H.264 decoder, this prediction scheme demand a large amount of

memory accesses and account for up to 80% of the total decoding cycle in the

complete baseline profile decoder [167]. In order to reduce the bus latency on-chip

memory is used for all memory operations [6].

5.3.2.1 Intra prediction

The intra prediction module is shown in Figure.5.4. Each macroblock can be

encoded into one of several intra coding types, which are denoted as intra 4x4 or

intra 16x16, together with the chroma prediction and Intra Pulse Code Modulation

(IPCM). There are nine prediction modes for luma 4x4 block, four modes for luma

16x16 block and four modes for chroma 8x8 block components. The encoder selects

the suitable mode for the prediction and transmits this information to the decoder

as control information [6, 167]. Intra module uses 4x4 level pipeline to reduce the

number of processing cycles. The intra prediction module uses three-level memory

hierarchy with data reuse mechanism, Multi Function Processing Element (MFPE)

and plane mode decomposition modules are used for macroblock prediction.

5.3.2.2 Inter prediction

The inter prediction module is a computational intensive module in the decoder as

is shown in Figure.5.4. Inter prediction is mainly divided into two macro stages,

reference data fetch and interpolation stages [167]. In general, for inter predic-

tion, all reference blocks need to be fetched from the external memory, this poses

a heavy burden on off-chip memory bandwidth. So the hierarchical memory or-

ganization is used to reduce the off chip memory access by using on chip memory.

It uses self-adaptive pipeline and tree-structured motion compensation algorithm

to eliminate unnecessary circuit switching which in turn increases the operating

speed while retaining the constant throughput [6]. The self adaptive pipeline

mechanism uses 4x4 block level pipeline, process 1x4 pixels in a column wise fash-

ion simultaneously. It uses different macro block partitions and motion vectors

for pixel prediction. The pipeline structure recognizes all the possible combina-

tions of blocks using Variable Block Shape (VBS) technique. The Inter prediction

module consists of interpolators for luma/chroma components and they process

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 123

the samples sequentially. It is reported that the inter prediction module takes 500

cycles for decoding a single macro block [167].

5.3.2.3 Deblocking filter

Deblocking filter (DBF) is used to reduce the blocking distortion of each 16x16

macroblock after reconstruction of the frame as shown Figure.5.4. The DBF

consumes one-third of the computational requirements of a H.264/AVC decoder

[140, 166]. This filtering process requires larger memory bandwidth because almost

every sample of a reconstructed frame need to be reused from memory, either to be

modified or used to determine whether neighboring samples should be modified or

not. The processing of pixels in the DBF takes place on macroblock basis, starts

with vertical edges being filtered, followed by horizontal edges. Filtering in both

horizontal and vertical directions for each macroblock should be completed before

accessing the next macroblock. The filtering process starts with luma, followed

by chroma Cb and the chroma Cr.

Finite Impulse Response (FIR) filters of different length are applied to modify

the pixel values of the boundary of each macro block. The filter length depends

on the the BS of the macro block. All boundary edges should be conditionally

filtered as per the video coding standard [135, 166]. The condition depends on the

BS and the pixel gradient across the boundary. This information is accessed from

the BS decoding module which is inside the hybrid length decoding module. The

BS values lies between (0, 4), and is assigned to each sub edges before the entire

deblocking process starts. BS equals to 4 refers to strong filtering; BS equals to

0 means no filtering; otherwise, a more common-mode filter is applied for BS (1,

2, 3). The BS of any chroma edge is identical to its corresponding luma edge.

The pipeline architecture of DBF reduces the average time required for filtering

operation. The present work uses 5-stage pipeline and single edge filter. This

architecture reduces 55% of total cycles. It consumes 204 cycles for filtering of

one 16x16 macroblock without utilizing dual-port or two-port SRAM [166, 6].

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 124

5.3.3 Display controller

The display controller can be regarded as post-processing block of video decoder.

First, 4:2:0 YCbCr format is padded to 4:4:4 format. Then the padded frame is

converted to RGB format. Each pixel is of 24-bits and stored in a large display

memory. According to the timing requirement of the display i.e. 25MHz, RGB

pictures are sequentially fetched from display memory and displayed on the Liquid

Crystal Display (LCD) monitor [171].

5.4 Programmable System on Chip (PSoC) plat-

form for H.264 decoder

In this case study, an IP core of H.264 decoder is developed using the open source

RTL code and validated in the SoC platform. Although the reference design was

implemented in ASIC and FPGA (Virtex-4) [141, 168], but not explored in FPGA

based SoC platform. The uncertainty of resource quality is the one of the biggest

problems to use open source IP, after a series of comprehensive testing only, we can

use it in real time systems. The following modifications are done in the reference

design in order to implement in the FPGA based SoC platform.

Replacing behavioral RAM

The decoder is modified by replacing behavioral RAMs by on chip memories Xilinx

single port or dual port memories (version 6.2) are used in intra prediction, MC

and DBF modules. Along with this two ping-pong dual port memories and one

display memory are used for displaying output frame. The bit stream memory

controller uses 64Kbytes of memory for storing 300 frames of data. The bit stream

buffer uses two memories to store the present frame (10Kx32 bytes). The intra

prediction module uses single port memory of 256x32 bytes. Similarly DBF uses

three memories one of 352x32 bytes size and other two are of 96x32 bytes size. One

memory controller of 10Kx32 bytes for processing the YUV data. After conversion

of YUV data to RGB format followed by sub-sampling, the updated RGB data

is stored in a memory controller of size 30Kx24 bytes. This buffer is used as a

display buffer for storing the RGB data before sending it to display [168]. The

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 125

future work involves the use of external memory controller for all the modules, for

higher resolution video.

Removal of clock gating

As the reference design was targeted for ASIC implementation, clock gating tech-

nique was used to reduce power consumption [168, 169]. In order to implement

the reference design in the FPGA clock gating should be removed and chip enable

logic need to be included [168]. In the modified design, clock gating is removed

and distributed chip enable signals are included using the global control module.

Display buffer

The modified design is interfaced with the YUV-RGB converter and color space

conversion module (4:2:0) to (4:4:4) for displaying the frame in monitor. The

Virtex-5 FPGA development board has a DVI controller which converts 24-bit

into 12-bit DVI standard data and displays [171].

Clock generation

The modified design of H.264 decoder works at 1.5 MHz and LCD controller works

at 25 MHz. The complete decoder has an input clock frequency of 25 MHz. It has

two Digital Clock Managers (DCM 1 and DCM 2) which are connected in cascaded

manner [60]. The DCM 1 is used for dividing the input clock by 16 and DCM 2

is used (low frequency mode) to divide the DCM 1 output by two. The output

frequency of DCM 2 (1.5 MHz) and is fed to the input of H.264 decoder. Input

frequency of 25MHz clock is also fed to input of LCD controller. Since Virtex-5

Device does not have DCM, Xilinx Synthesizer tool (XST) infers the DCM as

PLL.

5.4.1 SoC platform details.

The reference design is modified as [140, 141] and successfully implemented in

Virtex-5 FPGA development board. For testing the design, the internal (on-chip)

memory is used to store the input encoded bit stream. This internal memory uses

Block-RAM which gives enough flexibility for accessing the video at a faster rate,

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 126

DDR-SDRAM DVI
Controller

Processor
PPC-440

H.264
IP Core

Central
DMA

DISPLAY

UART Timer

PLB bus1

PLB bus0

Clock
Generator

IRQ MCI

BRAM
Controller

F
C
M

DCR bus

BRAM

DCR
INTR

Figure 5.5: PSoC platform for H.264 decoder IP

however in SoC system this is replaced with external DDR2 interface for storing

the input encoded video data.

The complete H.264 IP is developed and integrated into the SoC platform

as shown in the Figure.5.5. The IP is interfaced with the PPC440 processor

using the APU interface technique. The system include IPs like PowerPC440

(PPC440), PLB bus, DDR2 (256 Mbytes), Clock generator, UART, Central DMA

Controller, Interrupt Controller and LCD Display Controller. DDR2 is used for

storing the heap and stack of the software as well as to store the input bitstream

data. The SoC platform has two PLB buses (PLB0 and PLB1) and 1 DCR bus

and 1 FCB bus. The two PLB buses are connected to the processor through PLB0

and PLB1 bus interface. PLB0 and central DMA are connected as Master port of

the processor and PLB1 of processor is shared with all other peripherals including

the processor and DMA. The central DMA has both slave and master ports, this

helps to transfer the DDR2 data to memory controller through PLB0 Bus. DCR

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 127

bus and DCR interrupt controller are useful for setting the display address of DVI

controller. All the IPs except H.264 decoder IP are interfaced using the PLB

bus whereas the decoder IP is interfaced using the FCB bus. The FCB bus is

connected to H.264 decoder. The profile timer and interrupt controller shown in

Figure.5.5) are also connected to slave bus PLB0 to evaluate the execution time

of the both hardware and software of the H.264 decoder. The frequency of SoC

platform, display controller and the H.264 decoder IP are set to 200 MHz, 25MHz

and 1.5 MHz respectively. All these frequencies are configured by using a clock

generator IP as shown in Figure.5.5.

The H.264 video decoder IP has internal modules for intra frame prediction,

IDCT, IQ, MC and DBF. This IP has two generic FIFO interfaces as discussed

in chapter 1. The H.264 APU is called through a Application Programming In-

terface (API). Once it is invoked, the operation of H.264 hardware module starts

working. The H.264 IP has two internal data buffers one is for storing the H.264

encoded bitstream data from DDR2-SDRAM and other is for storing the frame

data for displaying the decoded data in the monitor. In this case, the central

DMA controller transfers the bitstream data of 300 frames onto the on chip input

buffer for processing. The on-chip bit stream memory is used to reduce the bus

latency. The bitstream parser processes the on-chip buffer data according to the

syntax of the bitstream data and subsequently the decoding process is completed

as mentioned in previous Section 5.3 and the decoded video is displayed in the

monitor.

5.5 Results and analysis

The SoC system is tested using the Virtex-5FXT FPGA development board. For

validating the IP, different video sequences are decoded and the performance of

the SoC design is evaluated. This is tabulated in Table.5.4. Before validating the

complete SoC, individual modules of the IP and the complete IP are simulated at

various levels of design, such as behavioral simulations shown in Figure.5.6, Fig-

ure.5.7 and post synthesis simulation, post place and route simulations as shown

in Figure.5.8 and Figure.5.9 respectively.

All the simulations are compared with the behavioral simulation, it is observed

that the results are matching except some additional delays observed in post lay-

out simulation. The behavioral simulation shows the output decoded data after

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 128

H.264decoder Simulation in
hardware(FPGA)

Figure 5.6: Behavioral simulation of H.264 decoder in text file

00... 00... 0... 004c4 004c8 004cc 004d0 004e8

a096 6a2a 4... 0000 2017 419a 156a 0a17

00 01 02 03 04 05

00 00 00 00 00

0000 0c34 0000 0c34 0000

82828282 82828282

0000 0000 0c34 0000 0c34

82828282 82828282

00... 0000... 0000... 0000... 0000...

0 ps 100000000000 ps 200000000000 ps

Clk

Reset

DF_Flag

Freq_ctrl0

Freq_ctrl1

Slice_header

Bitstream_RAM_Rd_En

Bitsream_RAM_Addr 00... 00... 0... 004c4 004c8 004cc 004d0 004e8

BitStream_Buffer_Data a096 6a2a 4... 0000 2017 419a 156a 0a17

Pic_Num 00 01 02 03 04 05

MB_Num 00 00 00 00 00

RAM0_Wr

RAM0_CS

RAM0_Addr 0000 0c34 0000 0c34 0000

RAM0_Data 82828282 82828282

RAM1_CS

RAM1_Wr

RAM1_Addr 0000 0000 0c34 0000 0c34

RAM1_Data 82828282 82828282

Dis_Frame_Data 00... 0000... 0000... 0000... 0000...

Entity:nova_tb Architecture:fast Date: Thu Feb 28 7:01:24 PM India Standard Time 2013 Row: 1 Page: 1

Figure 5.7: Behavioral simulation of H.264 decoder

40ms. The first frame is decoded and indicated by frame-end (eof) signal. The

other signals like number of macroblocks (mb num) and frame number (pic num)

are used to verify and debug the design. After this, the complete SoC is devel-

oped as shown in Figure.5.5 using Xilinx EDK environment. The input stimuli

are applied to the prototype system through DDR2 and Central Direct Memory

Access (CDMA). For functional and timing verification, the SoC decoded results

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 129Post synthesis

Figure 5.8: Post-synthesis simulation of H.264 decoder

Figure 5.9: Post-layout simulation of H.264 decoder

are compared with the reference software results, and resulting video on the dis-

play monitor.

Prior to this, software profiling of H.264 decoder of (JM 9.4) in PPC440 pro-

cessor with standalone and Petalinux RTOS are carried out. The profiling results

are shown in Figure.5.10 and Figure.5.11. It is observed that DBF, MC together

consumes 70% of the total computation time for decoding a test video sequence

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 130

(Foreman). Further, resource utilization of the complete SoC is carried out and it

is found that 81% of resources are consumed due to the H.264 IP and additional

6% of resources are due to the DDR2 controller and other peripherals as shown

in Table.5.3. The maximum frequency of H.264 decoder and operation frequency

of SoC, H.264 IP and LCD clock are tabulated in Table.5.3. The test bed for

H.264 coprocessor platform is shown in Figure.5.12. The acceleration is measured

in terms of no of frames processed with respect to time. It is observed that for

decoding 300 frames of foreman sequence the embedded processor (PPC440) took

72.06 seconds whereas the hardware H.264 took 11.40 seconds. i.e. the software

H.264 decoder decoded very few frames (4-5 fps) per second compared to the

hardware (26-30 fps). This statistics remains valid for all tested video sequences.

The results are tabulated in Table.5.4. From this it can be concluded that the

developed accelerator gives an acceleration of 6-7x over software implementation.

Figure 5.10: Software H.264 decoder profiling on PPC440 processor in standalone

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 131

Profiling results

Figure 5.11: H.264 decoder profiling on PPC440 processor in petalinux OS

Figure 5.12: H.264 Hardware coprocessor testbed setup

Table 5.3: Resource utilization of H.264 decoder in SoC

Decoder/SoC system BRAM DSP48E Slice Registers Slice LUTs Slices Max Freq (MHz)
H.264 IP 105 (70%) 4 (3%) 9209 (20%) 26883 (60%) 33600 (75%) 107.773

H.264 SoC 122 (86%) 24 (19%) 16452 (37%) 35004 (78%) 35432 (78%) 200 & 1.5& 25

5.6 Conclusions

In this case study an open source H.264 decoder is used for developing a coproces-

sor to the PPC440 processor and validated in SoC platform. The H.264 decoder

CHAPTER 5. COPROCESSOR FOR H.264 VIDEO DECODER 132

Table 5.4: Evaluation of speed up for different sequences for 300 frames for Quan-
tization Parameter (QP)=28

Sequence SW H.264 SW H.264 HW H.264 HW H.264
F/s Sec F/s Sec

News 4.68 63.84 29.4 10.20
Akiyo 4.74 63.11 28.9 10.36

Salesman 4.42 67.61 28.6 10.52
grandma 4.46 67.04 28.1 10.64

Mother-Daughter 4.37 68.42 28.0 10.70
Claire 4.33 68.98 27.6 10.84

Carphone 4.25 70.41 26.7 11.20
Foreman 4.15 72.06 26.3 11.40

has several advantages such as pipeline and parallel processing, memory access

reduction etc. In this work, the open source H.264 decoder is modified and used

as coprocessor. The modified decoder is implemented in FPGA and verified its

functionality before integrating as IP into SoC. In this work the H.264 IP is tested

in various simulation levels and it is observed that the behavioral and post layout

simulations are matching with each other. Further it is used as a coprocessor in

SoC by interfacing the IP as an APU to the PPC440 processor. Software profiling

of H.264 decoder is also performed in SoC platform. The proposed SoC solution

of H.264 decoder gives an acceleration of 6-7x compared to the equivalent software

implementation. The future work involves i) modification of IP to cater higher res-

olution of video by replacing internal memories with external memory, ii) power

analysis of the SoC, iii) interfacing the developed IP as a Slave Unit (SU) and

compare its acceleration with APU interfacing.

Chapter 6

Conclusions

The computational complexity of signal processing and multimedia algorithms

limit its implementation in embedded processors. This thesis explores the design

methodology for designing coprocessors of signal processing algorithms and shown

that coprocessor achieves significant acceleration for executing the algorithms.

Three different case studies are examined and to accelerate the design speed hard-

ware Intellectual Property (IP) for each case study was developed, The IPs were

interfaced with PowerPC440 (PPC440) embedded processor using Auxiliary Pro-

cessing Unit (APU) interfacing technique, and validated in Xilinx Virtex-5 FPGA

development board. The thesis compared the acceleration due to the coprocessor

with respect to the software execution of the algorithm in an embedded processor.

In summary, the conclusions of three case studies are given below.

In the first case study, an efficient algorithm for denoising Fiber Optic Gyro (FOG)

signal is proposed. The performance of the algorithm is compared with the Dis-

crete Wavelet Transform (DWT) and conventional Kalman Filter (KF) technique.

The experimental results concluded that the proposed algorithm (AMADMKF)

denoises the signal efficiently compared to other algorithms. Furthermore, a hard-

ware IP of the algorithm is developed and interfaced with the PPC440 processor

using APU interface technique and found that the developed IP gives an acceler-

ation of 65x compared to its equivalent software implementation.

In embedded system design hardware/software co-design is a popular method

for designing complex systems. Although co-design platform gives flexibility to

change the design without redesign but the bus overhead due to the communica-

tion between processor and IP dominates the overall execution time of the design.

133

CHAPTER 6. CONCLUSIONS 134

To address this, in the second case study we have considered an optimization algo-

rithm (Differential Evolution (DE)) for building the coprocessor. This algorithm

has two major components, i) the algorithm and ii) the fitness function evalua-

tion. In this thesis both are implemented in a single IP to reduce the bus overhead.

Two separate IP’s for float and fixed point DE algorithm are developed. In these

IP, both DE logic and fitness evaluation modules are coupled to a single module.

The software of fixed and float DE algorithm are ported in PPC440 processor

and profiled at 200 MHz frequency. The execution time for optimizing different

test functions are evaluated. The hardware IP of both fixed and float DE IPs are

connected to the PPC440 processor using both APU and Slave Unit (SU) inter-

facing techniques. The performance of both interface methods are evaluated in

terms of acceleration and power consumption with respect to equivalent software

implementation. Furthermore, for performance evaluation DE software code is

ported in different processors and acceleration factors are compared. . In the SoC

platform, effect of hard Floating Point Unit (FPU) on processor is also studied by

enabling/disabling hard FPU of Microblaze (MB), PPC440 processors. It is con-

cluded that the hardware acceleration of MB based systems are more compared

to PPC440 based system. Because, PPC440 based systems takes less execution

time compared to MB based system. Although PPC440 with hard FPU is best

configuration for software, but floating point DE with either APU or SU inter-

face gives much better acceleration compared to software implementation. It is

also concluded that APU and SU interface of both the IPs give same acceleration

factor. Acceleration factor increases with the dimension/complexity of the test

functions.

The resource and power analysis of different interfacing accelerators have shown

that floating point DE IP consumes more resources and power as compared to fixed

point IP. The developed IP is also used to solve system identification task using

IIR filter in FPGA. The filter coefficients are evaluated using the developed IP

with APU interface to PPC440 processor. Results have shown that the IIR filter

coefficients are matched with reference coefficients and resulted an acceleration of

11x and 150x with fixed and float DE IPs respectively.

In the third case study, a coprocessor for multimedia H.264 codec is devel-

oped using the open source Verilog code. H.264 IP is implemented in Virtex-5

FPGA. The equivalent software C code of H.264 is ported in PPC440 processor

and profiled at 200 MHz frequency. The H.264 IP is tested in various simulation

CHAPTER 6. CONCLUSIONS 135

levels for functional verification. H.264 IP is interfaced with the PPC440 processor

using APU interfacing method. The performance of the accelerator is validated

by decoding different standard video sequences. The results have shown that the

accelerator achieved an acceleration of 6-7x compared to its equivalent software

implementation in PPC440 processor.

Future scopes

In this thesis, we have concentrated on three different case studies in three chapters

having their own contributions and future works. There are several interesting di-

rections for further research and development based on the work in this thesis. In

the first case study, the future work will be to extend the hardware for multi sen-

sor environment, ii) Optimizing the AMADMKF IP for lesser resource utilization

and high frequency of operation. Finally, the implementation can be extended to

Adaptive Kalman Filter (AKF) and other Kalman Filtering techniques without

changing the SoC platform and interface details. In the second case study, the

future work will be solving real-time optimization problems like parameter adap-

tion of Kalman Filter, Motion estimation in video sequences, radio network design

in embedded processor. Different variants of DE algorithm can be implemented

in hardware to improve the quality of solution. Finally development of real-time

evolutionary engine for future evolutionary system is the future work of this study.

In the third case study, the H.264 IP can be further accelerated for processing

higher resolution video by replacing on chip memory with external memory. The

performance comparison of SU interface with APU interface for this application

is an interesting future work of this thesis. Finally,this work can be extended to

implement High Efficiency Video Coding (HEVC) codec in FPGA.

Appendix A

There are six test functions [126, 127] we employed in this paper, which are given

below.

Function 1 (Two variables): Rosenbrock function:

f(x) = 100.(x2 − x21)2 + (1− x1)2

Search domain:−9 < xj < 11 j = 1, 2

One global optimum with f = 0 at (1, 1)

Function 2 (Two variables): Goldstein function:

f(x) = [1 + (x1 +x2 + 1)2× (19− 14x1 + 3x21− 14x2 + 6x1x2 + 3x22)]× [30 + (2x1−
3x2)

2 × (18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

Search domain:−2 < xj < 2, j = 1, 2.

One global optimum with f = 3 at (0,−1)

Function 3 (Three variables): Sphere function:

f(x) = x21 + x22 + x23

Search domain: −5.12 < xj < 5.12 j = 1, 2, 3

One global optimum with f = 0 at (0, 0, 0)

Function 4 (Four variables): Variably dimensioned function:

f(x) =
∑4

i=1(xi − 1)2 +
[∑4

i=1 i(xi − 1)
]2

+
[∑4

i=1 i(xi − 1)
]4

Search domain:−9 < xj < 11, j = 1, 2, 3, 4

One global optimum with f = 0 at (1, 1, 1, 1)

Function 5 (32 variables): Shifted Sphere function:

f(x) =
∑D

i=1 x
2
i x = [x1, x2, x3, ..., xD]

Search domain:−100 < xj < 100 j = 1, 2, .., 32

136

CHAPTER 6. CONCLUSIONS 137

One global optimum with f(x) = 0 at (0, 0, .., 0)

Function 6 (32 variables): Shifted Schwefel’s function:

f(x) =
∑n

i=1

(∑i
j=1 xi

)2
Search domain:−100 < xj < 100, j = 1, 2, .., 32

One global optimum with f = 0 at (0, 0, .., 0).

References

[1] Ron Sass and Andrew G. Schmidt. Embedded Systems Design with Platform

FPGAs Principles and Practices. Elsevier Inc, USA, 2010.

[2] Don Davis,Srinivas Beeravo,Ranjesh Jaganathan. Hardware / Software

Codesign for Platform FPGAs. Xilinx Application Notes, 2005.

[3] EDK Concepts, Tools, and Technique: A Hands-On Guide to Effective Em-

bedded System Design . Xilinx User guide, (683), 2011.

[4] Xilinx. Reference Guide: Embedded Processor Block in Virtex-5 FPGAs.

Xilinx User guide, (200), 2008.

[5] Luciano Volcan Agostani. Developing Architectures for High Performance

Dedicated Video Compression According to the H.264/AVC Standard. PhD

thesis, Department of Computer science, Federal University of Rio Grande

do Sul, Brazil, 2007.

[6] Ke, Xu. Power-efficient Design Methodology for Video Decoding. PhD the-

sis, Department of Electronic Engineering, The Chinese University of Hong

Kong, china., 2007.

[7] Anumandla, KiranKumar and Peesapati, Rangababu and Sabat, SamratL.

and Udgata, SibaK. SoC based floating point implementation of differen-

tial evolution algorithm using FPGA. Design Automation for Embedded

Systems, doi:10.1007/s10617-013-9107-4:1–20, 2013.

[8] P.J. Pingree, J.-F.L. Blavier, G.C. Toon, and D.L. Bekker. An FPGA/SoC

Approach to On-Board Data Processing Enabling New Mars Science with

Smart Payloads. In Proceedings of the IEEE Conference on Aerospace, pages

1–12, mar 2007.

138

REFERENCES 139

[9] Bekker, Dmitriy L and Blavier, J-FL and Toon, Geoffrey C and Servais,

Christian. An FPGA-based data acquisition and processing system for the

MATMOS FTIR instrument. In Proceedings of the IEEE Aerospace confer-

ence, pages 1–11. IEEE, 2009.

[10] Walid Farid Abdelghaphar Abdelfatah. Real time embedded system design

and realization for integrated navigation systems. Master’s thesis, Depart-

ment of Electrical and Computer Engineering, Queens University, Kingston,

Ontario, Canada, 2010.

[11] Abdelfatah, Walid Farid and Georgy, Jacques and Iqbal, Umar and

Noureldin, Aboelmagd. FPGA-Based Real-Time Embedded System for

RISS/GPS Integrated Navigation. Sensors, 12(1):115–147, 2011.

[12] Ansari, Ahmad and Ryser, Peter and Isaacs, Dan. Accelerated System Per-

formance with APU-enhanced processing. Xcell Journal, first quarter, 2005.

[13] Pellerin, David and Edvenson, Greg and Shenoy, Kunal and Isaacs, Dan. Ac-

celerating PowerPC software applications. Xilinx Xcell Embedded Magazine,

2005.

[14] I. Kuon and J. Rose. Measuring the Gap Between FPGAs and ASICs. IEEE

Transactions on,Computer-Aided Design of Integrated Circuits and Systems,

26(2):203–215, feb 2007.

[15] Yiannacouras, Peter. FPGA-based soft vector processors. PhD thesis, De-

partment of Electrical and computer Engineering, University of toronto,

Toronto, 2009.

[16] Vincent Andrew Akpan. Development of New Model-Based Adaptive Predic-

tive Control Algorithms and their Implementation on Real-Time Embedded

Systems. PhD thesis, Department of Electrical and Computer Engineering,

Thessaloniki, Greece, 2011.

[17] Charuchandra, Prabhushankar. FPGA prototyping of the MSP430F5172.

Master’s thesis, Department of Computer Science and Engineering, Univer-

sity of Gothenburg, Gteborg, Sweden, aug 2010.

[18] Tomáś Brabec. Algorithm Acceleration using FPGAs. Technical report,

Czech Technical University, Prague, 2004.

REFERENCES 140

[19] Youn-Long Steve Lin. Essential Issues in SOC Design Designing Complex

Systems-on-Chip. Springer, P.O. Box 17, 3300 AA Dordrecht, Netherlands,

2006.

[20] Darringer, J. A. and Bergamaschi, R. A. and Bhattacharya, S. and Brand,

D. and Herkersdorf, A. and Morrell, J. K. and Nair, I. and Sagmeister, P.

and Shin, Y. Early analysis tools for system-on-a-chip design. IBM J. Res.

Dev., 46(6):691–707, nov 2002.

[21] Holger Lange. Reconfigurable Computing Platforms and Target System Ar-

chitectures for Automatic HW/SW Compilation. PhD thesis, Department

of computer science, Darmstadt Technical University, Germany, 2011.

[22] Zou, Yi. Coprocessor Acceleration for Domain-Specific Computing. PhD the-

sis, Department of Computer Science, University of California, Los Angeles,

USA, 2012.

[23] Rosinger, Hans-Peter. Connecting customized IP to the MicroBlaze soft

processor using the Fast Simplex Link (FSL) channel. Xilinx Application

Note, (529), 2004.

[24] Garcia, Philip and Compton, Katherine and Schulte, Michael and Blem,

Emily and Fu, Wenyin. An overview of reconfigurable hardware in embedded

systems. EURASIP Journal on Embedded Systems, 2006, 2006.

[25] Ng, Harn Hua and Pillai, Latha. Accelerated system performance with the

APU controller and XtremeDSP slices. Xilinx Application Notes, (717),

2005.

[26] Gupta, Gaurav and Jones, Ben and Steiner, Glenn C. PowerPC Processor

with Floating Point Unit for Virtex-4 FX Devices. Xilinx Application Notes,

2006.

[27] Richard Griffith and Felix Pang. MicroBlaze System Performance Tuning.

Xilinx Application Notes, (348), 2008.

[28] Steiner,Glenn. Code Acceleration with an APU Coprocessor:a Case Study

of an LPM Algorithm. Xilinx Application Notes, (738), 2008.

REFERENCES 141

[29] Zicari, Paolo and Corsonello, Pasquale and Perri, Stefania and Cocorullo,

Giuseppe. A matrix product accelerator for field programmable systems on

chip. Microprocessors and Microsystems, 32(2):53–67, 2008.

[30] Xu Guo and M. Gora. An Instruction Set Extension of the Virtex-5 PowerPC

440 for Elliptic Curve Cryptography. Technical report, dec 2008.

[31] Ramanathan, S. and Nandy, S.K. and Visvanathan, V. Reconfigurable Filter

Coprocessor Architecture for DSP Applications. Journal of VLSI signal

processing systems for signal, image and video technology, 26(3):333–359,

2000.

[32] Galanis, Michalis D. and Dimitroulakos, Gregory and Goutis, Costas E.

Exploring the speedups of embedded microprocessor systems utilizing a high-

performance coprocessor data-path. J. Supercomput., 39(3):251–271, mar

2007.

[33] Wassner, J. and Zahn, K. and Dersch, U. Hardware-software codesign of a

tightly-coupled coprocessor for video content analysis. In IEEE Workshop

on Signal Processing Systems (SIPS), pages 87–92, 2010.

[34] Mingas, Grigorios and Tsardoulias, Emmanouil and Petrou, Loukas. An

FPGA implementation of the SMG-SLAM algorithm. Microprocessors. Mi-

crosystems, 36(3):190–204, may 2012.

[35] Vera, Alonzo and Meyer-Baese, Uwe and Pattichis, Marios. An FPGA-

based rapid prototyping platform for wavelet coprocessors. In Defense and

Security Symposium, pages 657615–657615. International Society for Optics

and Photonics, 2007.

[36] Elhossini, Ahmed and Areibi, Shawki and Dony, Robert. An FPGA imple-

mentation of the LMS adaptive filter for audio processing. In IEEE Inter-

national Conference on Reconfigurable Computing and FPGA’s (ReConFig)

, pages 1–8. IEEE, 2006.

[37] Wait, CD. IBM PowerPC 440 FPU with complex-arithmetic extensions.

IBM Journal of Research and Development, 49(2.3):249–254, 2005.

REFERENCES 142

[38] Dmitriy L. Bekker. Hardware and Software Optimization of Fourier Trans-

form Infrared Spectrometry on Hybrid-FPGAs. Master’s thesis, Department

of Computer Engineering, Rochester Institute of Technology, Rochester,

New York, USA, 2007.

[39] Ahsan Shabbir, Akash Kumar, Bart Mesman, and Henk Corporaal. En-

abling MPSoC Design Space Exploration on FPGAs. In Wireless Networks,

Information Processing and Systems, volume 20 of Communications in Com-

puter and Information Science, pages 412–421. Springer Berlin Heidelberg,

2009.

[40] Fons Llúıs, Francisco and others. Embedded Electronic Systems Driven by

Run-Time Reconfigurable Hardware . PhD thesis, Department of Electrical

Electronic Engineering and Automation, University Rovira i Virgili, Tarrag-

ona, Spain, 2012.

[41] Fons, Francisco and Fons, Mariano and Cantó, Enrique and López, Mari-

ano. Deployment of Run-Time Reconfigurable Hardware Coprocessors Into

Compute-Intensive Embedded Applications. Journal of Signal Processing

Systems, 66(2):191–221, 2012.

[42] Chun-Hsian Huang and Pao-Ann Hsiung. Software-controlled dynamically

swappable hardware design in partially reconfigurable systems. EURASIP

J. Embedded Syst., pages 4:1–4:11, jan 2008.

[43] David Pellerin and Scott Thibault. Practical FPGA Programming in C.

Prentice Hall PTR, Massachusetts, USA, 2005.

[44] Rajanish K. Kamat and Santhosh A. Shinde and Vinod G. Shelake. Unleash

the System On Chip using FPGAs and Handel C. Springer, Dordrecht

Heidelberg, New York, 2010.

[45] Subramanian, Nikhil. A C-to-FPGA solution for accelerating tomographic

reconstruction. Master’s thesis, Department of Electrical Engineering, Uni-

versity of Washington, USA, 2009.

[46] Kunal Shenoy. Accelerating Software Applications Using the APU Controller

and C-to-HDL Tools. Xilinx Application Notes, (901), 2005.

REFERENCES 143

[47] Cong, Jason and Liu, Bin and Neuendorffer, Stephen and Noguera, Juanjo

and Vissers, Kees and Zhang, Zhiru. High-level synthesis for FPGAs: From

prototyping to deployment. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 30(4):473–491, 2011.

[48] Liu,Yanhong. System-level modeling and analysis of multimedia-soc plat-

forms. PhD thesis, Institute of Computing Technology, National University

of Singapore, 2007.

[49] Peesapati, Rangababu and Sabat, Samrat L. and K. P., Karthik and M.,

Narasimhappa and N., Giribabu and Nayak, J. FPGA-based embedded

platform for fiber optic gyroscope signal denoising. International Journal of

Circuit Theory and Applications, doi:10.1002/cta.1883, 2013.

[50] Balarin, Felice. Hardware-software co-design of embedded systems: the PO-

LIS approach. Kluwer Academic Pub, 1997.

[51] Kienhuis, Bart and Deprettere, Ed and Vissers, Kees and Van Der Wolf,

Pieter. An approach for quantitative analysis of application-specific dataflow

architectures. In Proceedings of International Conference on Application-

Specific Systems, Architectures and Processors, pages 338–349. IEEE, 1997.

[52] Fletcher, Bryan H. FPGA embedded processors. In Embedded Systems

Conference, pages 1–18, 2005.

[53] Pei-Yin Chen and Ren-Der Chen and Yu-Pin Chang and Leang-san Shieh

and Malki, H.A. Hardware Implementation for a Genetic Algorithm. IEEE

Transactions on Instrumentation and Measurement, 57(4):699 –705, Apr

2008.

[54] Xilinx MicroBlaze Processor. http://www.xilinx.com/tools/microblaze.html

[Accessed :21-07-2013].

[55] PowerPC 405 Processor Block Reference Guide. Xilinx User guide, (018),

2010.

[56] Virtex-5 FPGA Embedded Processor Block with PowerPC 440 Processor .

Xilinx Data sheet, (621), 2011.

REFERENCES 144

[57] Doug Amos and Austin Lesea and René Richter. FPGA-Based Prototyping

Methodology Manual Best Practices in Design-for-Prototyping. Synopsys,

Inc, Mountain View, CA, USA, 2010.

[58] EECG Toronto. http://www.eecg.toronto.edu/ pc/courses/432/ [Accessed

:21-07-2013].

[59] Tue University. http://www.win.tue.nl/ wsinmak/Education/2IN35/lab/

[Accessed :21-07-2013].

[60] Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs. Xilinx Appli-

cation Notes, (462), 2006.

[61] Lee, Tien-Lung and Bergmann, Neil W. Interfacing methodologies for IP

re-use in reconfigurable system-on-chip. In Microelectronics, MEMS, and

Nanotechnology, pages 454–463. International Society for Optics and Pho-

tonics, 2004.

[62] Justin Thiel. Splice: A Standardized Peripheral Logic and Interface Cre-

ation Engine. Master’s thesis, Department of Computer Science Engineer-

ing, Washington University in St. Louis, USA, 2007.

[63] OPB IPIF Architecture. Technical Report 414, Xilinx, Inc., 2100 Logic

Drive, San Jose, CA 95124-3400, 2004.

[64] Xilinx. Synthesis and Simulation Design Guide. Xilinx User guide, (626),

2006.

[65] Tutorial for FPGA based SoC system. http://www.fpgadeveloper.com/ [Ac-

cessed :21-07-2013].

[66] Jagannath Nayak. Fiber-optic gyroscopes: from design to production. Appl.

Opt., 50(25):E152–E161, sep 2011.

[67] H. Kajioka, H. Kumagai, T. Nakai, T Dohsho, H. Soekawa, and T Yuhara.

Commercial applications of mass-produced fiber optic gyros. In Proc.SPIE,

number 2837, pages 61–71, 1996.

[68] Samrat L. Sabat, P. Rangababu, K.P. Karthik, G. Krishnaprasad, and J.

Nayak. System on chip implementation of 1-D Wavelet transform based

REFERENCES 145

denoising of Fiber Optic Gyroscope signal on FPGA. In Proceedings of the

International Conference on Engineering Sustainable Solutions (INDICON),

pages 1–5, dec 2011.

[69] Yanbo Li, Yu Liu, Baoku Su, and Yansong Jiang. Modified wavelet filtering

algorithm applied to gyro servo technology for the improvement of test-

precision. Journal of Systems Engineering and Electronics, 22(3):488 –492,

jun 2011.

[70] Mao Ben, Wu Jun Wei, Wu Jian Tong, and Zhou Xue Mei. MEMS Gyro

Denoising Based on Second Generation Wavelet Transform. In Proceedings

of the on 9th International Conference on Pervasive Computing Signal Pro-

cessing and Applications (PCSPA), pages 255 –258, sep 2010.

[71] S.M. Paniit and Wibang Zhang. Modeling Random Gyro Drift Rate by

Data Dependent Systems. IEEE Transactions on Aerospace and Electronic

Systems., AES-22(4):455 –460, jul 1986.

[72] Gannan Yuan, Haibo Liang, Kunpeng He, and Yanjun Xie. Research on sig-

nal de-noising technique for MEMS gyro. In Proceedings of the 3rd Interna-

tional Symposium on Systems and Control in Aeronautics and Astronautics

(ISSCAA), pages 1288 –1291, jun 2010.

[73] Kezhi Zhang, Weifeng Tian, and Feng Qian. A novel adaptive filter mech-

anism for improving the measurement accuracy of the fiber optic gyroscope

in the maneuvering case. Measurement Science and Technology, 18(9):2777,

2007.

[74] Kai Xiong, Tang Liang, and Lei Yongjun. Multiple Model Kalman Filter for

Attitude Determination of Precision Pointing Spacecraft. Acta Astronautica,

68(7-8):843–852, 2011.

[75] Liang Xue, Cheng-Yu Jiang, Hong-Long Chang, Yong Yang, Wei Qin, and

Wei-Zheng Yuan. A novel Kalman filter for combining outputs of MEMS

gyroscope array. Measurement, 45(4):745 – 754, 2012.

[76] Lu Di, Yao Yu, and He Fenghua. Sensor management based on cross-entropy

in interacting multiple model Kalman filter. In Proceedings of the American

Control Conference, volume 6, pages 5381 –5386, 2004.

REFERENCES 146

[77] Cezary Kownacki. Optimization approach to adapt Kalman filters for the

real-time application of accelerometer and gyroscope signals filtering. Digital

Signal Processing, 21(1):131 – 140, 2011.

[78] A.H. Mohamed and K.P Schwarz. Adaptive Kalman Filtering for INS/GPS.

Journal of Geodesy, 73:193–203, 1999.

[79] Sameh Nassar and Naser El Sheimy. A combined algorithm of improving INS

error modeling and sensor measurements for accurate INS/GPS navigation.

GPS Solutions, 10:29–39, 2006.

[80] Sergio Baselga, Luis Garca Asenjo, Pascual Garrigues, and José Luis Lerma.

Inertial Navigation System Data Filtering Prior to GPS/INS Integration.

The Journal of Navigation, 62(04):711–720, 2009.

[81] Allan, D.W. and Barnes, J.A. A Modified Allan Variance with Increased Os-

cillator Characterization Ability. In Proceedings of 35th Annu.Freq.Control

Symp, pages 470–475, Baltimore, MD, USA, nov 1981.

[82] M. Vetterli. Wavelets, approximation, and compression. IEEE, Signal Pro-

cessing Magazine, 18(5):59 –73, sep 2001.

[83] S.G. Mallat. A theory for multiresolution signal decomposition: the wavelet

representation. IEEE Transactions on, Pattern Analysis and Machine In-

telligence, 11(7):674 –693, jul 1989.

[84] Ingrid Daubechies. Ten lectures on wavelets. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 1992.

[85] S.L. Sabat, N. Giribabu, J. Nayak, and K. Krishnaprasad. Characteriza-

tion of Fiber Optics Gyro and Noise Compensation Using Discrete Wavelet

Transform. In Proceedings of the 2nd International Conference on Emerg-

ing Trends in Engineering and Technology (ICETET), pages 909 –913, dec.

2009.

[86] Yuanxi Yang. Adaptively Robust Kalman Filters with Applications in Nav-

igation. In Sciences of Geodesy - I, pages 49–82. Springer Berlin Heidelberg,

2010.

REFERENCES 147

[87] Mehra, R. On the identification of variances and adaptive Kalman filtering.

IEEE Transactions on Automatic Control, 15(2):175–184, apr 1970.

[88] Dah-Jing Jwo and Ta-Shun Cho. A practical note on evaluating kalman

filter performance optimality and degradation. Applied Mathematics and

Computation, 193(2):482 – 505, 2007.

[89] Rangababu Peesapati and Samrat L. Sabat and Kiran Kumar Anumandla

and Palani Karthik Kandyala and Jagannath Nayak. Design and implemen-

tation of a realtime co-processor for denoising Fiber Optic Gyroscope signal.

Digital Signal Processing, doi: 10.1016/j.dsp.2013.04.010, 2013.

[90] Dah-Jing Jwo, Shun-Chieh Chang. Particle swarm optimization for GPS

navigation Kalman filter adaptation. Aircraft Engineering and Aerospace

Technology, 81(4):343– 352, 2009.

[91] I. Zurbenko, P. S. Porter, R. Gui, S. T. Rao, J. Y. Ku, and R. E. Eskridge.

Detecting Discontinuities in Time Series of Upper-Air Data: Development

and Demonstration of an Adaptive filter technique. Journal of Climate,

9(12):3548–3560, 1996.

[92] Mahmoud Lotfy ElGizawy. Continuous Measurement-While-Drilling Sur-

veying system Utilizing MEMS Inertial Sensors. PhD thesis, Department of

Geomatics Engineering, University of Calgary, Alberta, 2009.

[93] K.P. Karthik, P. Rangababu, Samrat L. Sabat, and J. Nayak. System on

Chip Implementation of Adaptive Moving Average Based Multiple-Model

Kalman Filter for Denoising Fiber Optic Gyroscope Signal. In Proceedings

of the International Symposium on Electronic System Design (ISED), pages

170 –175, dec 2011.

[94] Rangababu Peesapati and Samrat L. Sabat and K.P. Karthik and J. Nayak

and N. Giribabu. Efficient hybrid Kalman filter for denoising fiber optic gy-

roscope signal. Optik - International Journal for Light and Electron Optics,

doi:10.1016/j.ijleo.2013.02.013, 2013.

[95] Bahoura, Mohammed and Ezzaidi, Hassan. FPGA-implementation of dis-

crete wavelet transform with application to signal denoising. Circuits, Sys-

tems, and Signal Processing, 31(3):987–1015, 2012.

REFERENCES 148

[96] Rui Guo and L.S. DeBrunner. Two High-Performance Adaptive Filter Im-

plementation Schemes Using Distributed Arithmetic. IEEE Transactions on

Circuits and Systems, 58(9):600 –604, sept 2011.

[97] Xilinx. System Generator for DSP . Xilinx User guide, (10.1), 2008.

[98] Gate Count Capacity Metrics for FPGAs. Xilinx Application Notes, (059),

1997.

[99] Ali, layak. Particle Swarm Optimization techniques for solving numerical

and engineering optimization problems. PhD thesis, School of Physics, Uni-

versity of Hyderabad, India, 500046, 2012.

[100] J. Hay and K.K. Loo. Fast motion estimation using evolutionary strategy

search algorithm. In International Conference on Digital Telecommunica-

tions, ICDT ’06., page 16, aug 2006.

[101] Shing Tai Pan. Evolutionary computation on programmable robust iir filter

pole-placement design. IEEE Transactions on Instrumentation and Mea-

surement, 60(4):1469 –1479, april 2011.

[102] Lukáš Sekanina. From implementations to a general concept of evolvable

machines. In Proceedings of the 6th European conference on Genetic pro-

gramming, EuroGP’03, pages 424–433, 2003.

[103] Anumandla, KiranKumar and Peesapati, Rangababu and Sabat, SamratL.

and Udgata, SibaK. and Abraham, Ajith. Field programmable gate ar-

rays based differential evolution coprocessor: a case study of spectrum al-

location in cognitive radio network. IET Computers & Digital Techniques,

doi:10.1049/iet-cdt.2012.0109:1–14, 2013.

[104] Shih-An Li, Chen-Chien Hsu, Ching-Chang Wong, and Chia-Jun Yu. Hard-

ware/software co-design for particle swarm optimization algorithm. Infor-

mation Sciences, 181(20):4582–4596, oct 2011.

[105] A. Swarnalatha and A.P. Shanthi. Optimization of single variable functions

using complete hardware evolution. Applied Soft Computing, 12(4):1322 –

1329, 2012.

REFERENCES 149

[106] Pradeep R. Fernando, Srinivas Katkoori, Didier Keymeulen, Ricardo Zebu-

lum, and Adrian Stoica. Customizable FPGA IP core Implementation of a

General-Purpose Genetic Algorithm Engine. IEEE Transactions on Evolu-

tionary Computation, 14(1):133–149, feb 2010.

[107] Farmahini-Farahani, Amin and Vakili, Shervin and Fakhraie, Sied Mehdi

and Safari, Saeed and Lucas, Caro. Parallel scalable hardware implemen-

tation of asynchronous discrete particle swarm optimization. Engineering

Applications of Artificial Intelligence, 23(2):177–187, mar 2010.

[108] Girma S. Tewolde and Darrin M. Hanna and Richard E. Haskell. A mod-

ular and efficient hardware architecture for particle swarm optimization al-

gorithm. Microprocessors and Microsystems, 36(4):289 – 302, 2012.

[109] Rogério M. Calazan and Nadia Nedjah and Luiza M. Mourelle. A hard-

ware accelerator for Particle Swarm Optimization. Applied Soft Computing,

doi:10.1016/j.asoc.2012.12.034, 2013.

[110] Tirumalai, Vijay and Ricks, Kenneth G. and Woodbury, Keith A. Using

parallelization and hardware concurrency to improve the performance of a

genetic algorithm. Concurrency and Computation: Practice and Experience,

19(4):443–462, 2007.

[111] Gomez-Pulido, Juan A and Vega-Rodriguez, Miguel A and Sanchez-Perez,

Juan M and Priem-Mendes, Silvio and Carreira, Vitor. Accelerating floating-

point fitness functions in evolutionary algorithms: a FPGA-CPU-GPU

performance comparison. Genetic Programming and Evolvable Machines,

12(4):403–427, 2011.

[112] Munoz, D.M. and Llanos, C.H. and Coelho, L.D.S. and Ayala-Rincon, M.

Hardware Architecture for Particle Swarm Optimization using Floating-

point Arithmetic. In Proceedings of the Ninth International Conference on

Intelligent Systems Design and Applications, pages 243 –248, dec 2009.

[113] Muńoz, D.M. and Llanos, C.H. and Coelho, L.D.S. and Ayala-Rincon, M.

Comparison between two FPGA implementations of the Particle Swarm Op-

timization algorithm for high-performance embedded applications. In In the

Proceedings of Fifth International Conference on Bio-Inspired Computing:

Theories and Applications (BIC-TA), pages 1637–1645, 2010.

REFERENCES 150

[114] Munoz, D.M. and Llanos, C.H. and Coelho, L.D.S. and Ayala-Rincon, M.

Hardware Particle Swarm Optimization Based on the Attractive-Repulsive

Scheme for Embedded Applications. In Proceedings of the International

Conference on Reconfigurable Computing and FPGAs, pages 55 –60, dec

2010.

[115] Vaš́ıček, Zdeněk and Sekanina, Lukáš. Hardware accelerator of cartesian ge-

netic programming with multiple fitness units. Computing and Informatics,

29(6):1359–1371, 2012.

[116] Fábio Fabris and Renato A. Krohling. A co-evolutionary differential evo-

lution algorithm for solving minmax optimization problems implemented

on GPU using C-CUDA. Expert Systems with Applications, 39(12):10324 –

10333, 2012.

[117] Qin, A. K. and Raimondo, Federico and Forbes, Florence and Ong, Yew

Soon. An improved CUDA-based implementation of differential evolution on

GPU. In Proceedings of the fourteenth international conference on Genetic

and evolutionary computation, GECCO ’12’, pages 991–998, 2012.

[118] Ng, S.C. and Leung, S.H. and Chung, C.Y. and Luk, A. and Lau, W.H. The

genetic search approach. A new learning algorithm for adaptive IIR filtering.

IEEE Transactions on Signal Processing, 13(6):38 –46, nov 1996.

[119] Ganapati Panda and Pyari Mohan Pradhan and Babita Majhi. IIR system

identification using cat swarm optimization. Expert Systems with Applica-

tions, 38(10):12671 – 12683, 2011.

[120] Lipika Gupta and Rajesh Mehra. Modified PSO based Adaptive IIR Fil-

ter Design for System Identification on FPGA. International Journal of

Computer Applications, 22(5):1–7, may 2011.

[121] Karaboga, Nurhan. Digital IIR Filter Design Using Differential Evolution

Algorithm. EURASIP Journal on Applied Signal Processing, 2005:1269–

1276, jan 2005.

[122] Wu, Fang Jian-an, Tang Yang, Zhang Wenbing and Du Wei Zhu. Digital IIR

Filters Design Using Differential Evolution Algorithm with a Controllable

Probabilistic Population Size. PLoS ONE, 7(7):e40549, jul 2012.

REFERENCES 151

[123] Storn, Rainer and Price, Kenneth. Differential Evolution A Simple and

Efficient Heuristic for Global Optimization over Continuous Spaces. Journal

of Global Optimization, 11(4):341–359, dec 1997.

[124] Sum-Im, T and Taylor, GA and Irving, MR and Song, YH. Differential evo-

lution algorithm for static and multistage transmission expansion planning.

IET Generation, Transmission & Distribution, 3(4):365–384, 2009.

[125] Vesterstrom, J. and Thomsen, R. A comparative study of differential evolu-

tion, particle swarm optimization, and evolutionary algorithms on numerical

benchmark problems. In Congress on Evolutionary Computation, volume 2,

pages 1980 – 1987, June 2004.

[126] Suganthan, P. N. and Hansen, N. and Liang, J. J. and Deb, K. and Chen,

Y. P. and Auger, A. and Tiwari, S. Problem Definitions and Evaluation

Criteria for the CEC 2005 Special Session on Real-Parameter Optimization.

Technical report, Nanyang Technological University, Singapore, 2005.

[127] Ke Tang, Xiaodong Li, Ponnuthurai Nagaratnam Suganthan, Zhenyu Yang,

and Thomas Weise. Benchmark Functions for the CEC’2010 Special Session

and Competition on Large-Scale Global Optimization. Technical report,

University of Science and Technology of China (USTC), School of Com-

puter Science and Technology, Nature Inspired Computation and Applica-

tions Laboratory (NICAL): China, 2010.

[128] Floating Point Operator v5.0. Technical report, Xilinx, Inc., 2100 Logic

Drive, San Jose, CA 95124-3400, March 2011.

[129] S. Das and P.N. Suganthan. Differential Evolution: A Survey of the State-

of-the-Art. IEEE Transactions on Evolutionary Computation, 60(4):1469–

1479, apr 2011.

[130] M.B. Yeary and N.C. Griswold. Adaptive IIR filter design for single sen-

sor applications. IEEE Transactions on Instrumentation and Measurement,

51(2):259 –267, apr 2002.

[131] Liu, Ying-Hong and Kuo, Chih-Yu and Chang, Chien C. and Wang, Chang-

Yi. Electro-cosmotic flow through a two-dimensional screen-pump filter.

Phys. Rev. E, 84:036301, sep 2011.

REFERENCES 152

[132] Tang, Y. and Gao, H. and Kurths, J. and Fang, J.-A. Evolutionary Pinning

Control and Its Application in UAV Coordination. IEEE Transactions on

Industrial Informatics, 8(4):828 –838, nov 2012.

[133] A new design method based on artificial bee colony algorithm for digital IIR

filters. Journal of the Franklin Institute, 346(4):328 – 348, 2009.

[134] T. Wiegand, G. Sullivan, and A. JVT(eds) Luthra. Draft (ITU-T) recom-

mendation and final draft international standard of joint video specification

(ITU-T Rec.H.264 ISO/IEC 14496-10 AVC). JVT-G050r1, 2003.

[135] G.J. Sullivan and T. Wiegand. Video Compression - From Concepts to the

H.264/AVC standard. Proceedings of IEEE Conference on, 93(1):18–31, jan

2005.

[136] D. Marpe, T. Wiegand, and G.J. Sullivan. The H.264/MPEG4 advanced

video coding standard and its applications. IEEE Communications Maga-

zine, 44(8):134–143, aug 2006.

[137] Iain E Richardson. The H.264 Advanced Video Compression Standard; 2nd

ed. John Wiley and Sons Ltd, 2010.

[138] Micheal C.Brogioli. Reconfigurable heterogeneous DSP/FPGA Based Em-

bedded Architectures for Numerically Intensive Computing Workloads. PhD

thesis, Department of Electrical and Computer Engineering, Rice University,

Kingston, Houston, Texas, 2007.

[139] Lin, Chien-Chang. An Efficient Architecture for H.264 Video Decoder. PhD

thesis, Department of Information Engineering, National Chung Cheng Uni-

versity, 2007.

[140] Ke, Xu and Chiu-Sing Choy. Low-power H.264/AVC baseline decoder for

portable applications. In ACM/IEEE International Symposium on Low

Power Electronics and Design (ISLPED), pages 256 –261, aug 2007.

[141] Ke, Xu and Zhang, Min and Choy, Chiu. Design a Low-Power H.264/AVC

Baseline Decoder at All Abstraction LevelsA Showcase. Journal of Signal

Processing Systems, 67:317–330, 2012.

[142] Available on: http://iphome. hhi. de/suehring/tml/9.8/. JM Software.

REFERENCES 153

[143] Lindroth, T. and Avessta, N. and Teuhola, J. and Seceleanu, T. Complexity

Analysis of H.264 Decoder for FPGA Design. In Proceedings of the IEEE

International Conference on Multimedia and symposium, pages 1253 –1256,

jul 2006.

[144] Profiling Guide - A Guide to Profiling in EDK. Xilinx User guide, (448),

2010.

[145] Ostermann, Jörn and Bormans, Jan and List, Peter and Marpe, Detlev and

Narroschke, Matthias and Pereira, Fernando and Stockhammer, Thomas

and Wedi, Thomas. Video coding with H. 264/AVC: tools, performance,

and complexity. Circuits and Systems magazine, 4(1):7–28, 2004.

[146] Kthiri, Moez and Kadionik, Patrice and Le Gal, B and Levi, H and Ben

Atitallah, A. Performances analysis and evaluation of Xenomai with a H.

264/AVC decoder. In International Conference on Microelectronics (ICM)

, pages 1–4. IEEE, 2011.

[147] Tung-Chien Chen and Chung-Jr Lian and Liang-Gee Chen. Hardware ar-

chitecture design of an H.264/AVC video codec. In Proceedings of the Inter-

national Conference on Design Automation, Asia and South Pacific, page 8,

jan 2006.

[148] Agostini, Luciano V. and Azevedo Filho, Arnaldo P. and Staehler, Wagston

T. and Rosa, Vagner S. and Zatt, Bruno and Pinto, Ana Cristina M. and

Porto, Roger Endrigo and Bampi, Sergio and Susin, Altamiro A. Design and

FPGA prototyping of a H264/AVC main profile decoder for HDTV. Journal

of the Brazilian Computer Society, 12:25–36, mar 2007.

[149] Bonatto, Alexsandro C. and Soares, André B. and Renner, Adriano and

Susin, Altamiro A. and Silva, Leandro Max and Bampi, Sergio. A 720p

H.264/AVC decoder ASIC implementation for digital television set-top

boxes. In Proceedings of the 23rd symposium on Integrated circuits and

system design, (SBCCI), pages 168–173, New York, NY, USA, 2010.

[150] Rosa, Vagner S and Staehler, Wagston T and Azevedo, Arnaldo and Zatt,

Bruno and Porto, Roger E and Agostini, Luciano Volcan and Bampi, Ser-

gio and Susin, Altamiro Amadeu. FPGA Prototyping Strategy for a H.

REFERENCES 154

264/AVC Video Decoder. In Proceedings of the 18th IEEE/IFIP Interna-

tional Workshop on Rapid System Prototyping, pages 174–180. IEEE, 2007.

[151] Leanardo Max De Lima Silva. Physical Implementation of Hardware Archi-

tectures for Digital Video Decoding According to the H.264/AVC Standard.

Master’s thesis, Department of Computer science, Federal University of Rio

Grande do Sul,Brazil, 2010.

[152] Roszkowski, Mikólaj and Abramowski, Andrzej and Wieczorek, Michál and

Pastuszak, Grzegorz. Architecture design of the hardware h.264/avc video

decoder. International Journal of Electronics and Telecommunications,

56(3):291–300, 2010.

[153] Ke Xu. H.264 Baseline profile decoder. http://opencores.org/project,nova,

(nova. Rev13), 2009.

[154] Warsaw, Thomas and Lukowiak, Marcin. Architecture design of an

H.264/AVC decoder for real-time FPGA implementation. In Proceedings of

the IEEE 17th International Conference on Application-specific Systems, Ar-

chitectures and Processors, (ASAP), pages 253–256, Washington, DC, USA,

2006.

[155] Tung-Chien Chen, Chung-Jr Lian, and Liang-Gee Chen. Hardware archi-

tecture design of an H.264/AVC video codec. In Proceedings of the Design

Automation Conference Asia and South Pacific, (ASP-DAC), pages 750–757.

IEEE Press, 2006.

[156] Werda, Imen and Dammak, Taheni and Grandpierre, Thierry and Ayed,

Mohamed Ali Ben and Masmoudi, Nouri. Real-time H. 264/AVC baseline

decoder implementation on TMS320C6416. Journal of Real-Time Image

Processing, 7(4):215–232, 2012.

[157] Huan-Kai Peng and Chun-Hsin Lee and Jian-Wen Chen and Tzu-Jen Lo

and Yung-Hung Chang and Sheng-sung Hsu and Yuan-Chun Lin and Ping

Chao and Wei-Cheng Hung and Kai-Yuan Jan. A Highly Integrated 8mW

H.264/AVC Main Profile Real-time CIF Video Decoder on a 16MHz SoC

Platform. In Design Automation Conference,ASP-DAC ’07. Asia and South

Pacific, pages 112 –113, jan 2007.

REFERENCES 155

[158] B. Stabernack, K.-I. Wels, and H. Hubert. A System on a Chip Architecture

of an H.264/AVC Coprocessor for DVB-H and DMB Applications. IEEE

Transactions on Consumer Electronics, 53(4):1529 –1536, nov 2007.

[159] Hristo Nikolov, Todor Stefanov, and Ed F. Deprettere. Automated Integra-

tion of Dedicated Hardwired IP Cores in Heterogeneous MPSoCs Designed

with ESPAM. EURASIP J. Emb. Sys., pages 1–16, 2008.

[160] Hristo Nikolov, Adarsha Rao, Ed F. Deprettere, S. K. Nandy, and Ranjani

Narayan. A H.264 decoder: a design style comparison case study. In Pro-

ceedings of the 43rd Asilomar conference on Signals, systems and computers,

Asilomar, pages 236–242. IEEE Press, 2009.

[161] Adarsha Rao, S. K. Nandy, Hristo Nikolov, and Ed F. Deprettere. USHA:

Unified software and hardware architecture for video decoding. Symposium

on Application Specific Processors, 0:30–37, 2011.

[162] Dajiang Zhou, Jinjia Zhou, Xun He, Jiayi Zhu, Ji Kong, Peilin Liu, and S.

Goto. A 530 Mpixels/s 4096x2160@60fps H.264/AVC High Profile Video

Decoder Chip. IEEE Journal of Solid-State Circuits,, 46(4):777 –788, apr

2011.

[163] Y. Moshe and N. Peleg. Implementations of H.264/AVC baseline decoder on

different digital signal processors. In Proceedings of the 47th International

Symposium ELMAR, pages 37–40, jun 2005.

[164] Ye Xien, Zhou Haiyong, and Tao Weijiong. Real-time H.264/AVC Decoder

Implementation on PXA270. In Proceedings of International Conference on

Communications, Circuits and Systems (ICCCAS), pages 819 –821, jul 2007.

[165] Soares, André Borin and Bonatto, Alexsandro Cristóvão and Susin, Al-

tamiro Amadeu. Development of a SoC for Digital Television Set-Top Box:

Architecture and System Integration Issues. International Journal of Re-

configurable Computing, 2013.

[166] Ke, Xu and Chiu-Sing Choy. A Five-Stage Pipeline, 204 Cycles/MB, Single-

Port SRAM-Based Deblocking Filter for H.264/AVC. IEEE Transactions on

Circuits and Systems for Video Technology , 18(3):363 –374, mar 2008.

REFERENCES 156

[167] Ke, Xu and Chiu-Sing Choy. A Power-Efficient and Self-Adaptive Prediction

Engine for H.264/AVC Decoding. IEEE Transactions on,Very Large Scale

Integration (VLSI) Systems, 16(3):302 –313, mar 2008.

[168] Ke, Xu and Liu, Tsu-Ming and Guo, Jiun-In and Choy, Chiu-Sing. Methods

for Power/Throughput/Area Optimization of H.264/AVC Decoding. Jour-

nal of Signal Processing Systems, 60:131–145, 2010.

[169] Ke, Xu and Chiu-Sing Choy and Cheong-Fat Chan and Kong-Pang Pun.

Power-Efficient VLSI Realization of a Complex FSM for H.264/AVC Bit-

stream Parsing. IEEE Transactions on Circuits and Systems II: Express

Briefs, 54(11):984 –988, nov 2007.

[170] Ke, Xu and Choy, Chiu-Sing and Chan, Cheong-Fat and Pun, Kong-Pang.

Priority-based heading one detector in H.264/AVC decoding. EURASIP J.

Embedded Syst., 2007(1):18–18, jan 2007.

[171] DVI, VGA, and Component Video Demonstration . Xilinx User guide, (248),

2006.

	Acknowledgements
	Abstract
	Abbreviations
	Introduction
	Motivation

	Background
	Field Programmable Gate Array (FPGA)
	Hardware Software Co-design
	Hardware accelerator
	Related works
	Programmable System on Chip design
	Embedded Processors
	Memory
	Peripherals
	Bus interfaces
	Related tools

	Coprocessor for FOG signal Denoising
	Introduction
	Denoising algorithms
	Discrete Wavelet Transform (DWT)
	Kalman Filter (KF)
	Adjusting KF parameters

	Proposed Hybrid Kalman Filter (AMADMKF)
	Experimental setup
	Simulation results
	FPGA implementation of denoised algorithms
	Hardware architecture of DWT
	Hardware architecture of KF

	Hardware architecture of the proposed algorithm
	Moving average & Memory module (MA & Memory)
	Difference module (Diff)
	Variance module
	Threshold module
	Control logic

	Programmable System on Chip (PSoC) platform for AMADMKF coprocessor
	Implementation results
	FPGA implementation of AMADMKF IP core results
	PSoC implementation results

	Conclusions

	Coprocessor for DE algorithm
	Introduction
	Literature survey
	Differential Evolution algorithm
	 Software profiling of DE algorithm
	Hardware architecture of DE algorithm
	Initialization module
	Mutation module
	Crossover module
	Selection module
	Fitness Evaluation module
	Random Number Generator module
	Floating Point Unit

	Programmable System on Chip (PSoC) platform for DE algorithm
	Interfacing the DE IP as a Slave Unit
	Interfacing the DE IP as an Auxiliary Processor Unit

	Experimental setup
	Results and Analysis
	Simulation results
	Synthesis results
	Timing results
	SoC Resource and Power results
	Convergence results

	 Case Study: Infinite Impulse Response (IIR) system identification using DE algorithm
	Conclusions

	Coprocessor for H.264 video decoder
	Introduction
	Related works
	Profiles and Levels
	Encoder (forward path)
	Decoder

	FPGA implementation of H.264 decoder
	Bitstream controller
	Bitstream buffer
	Bitstream parser
	Hybrid length decoder

	Reconstruction data path
	Intra prediction
	Inter prediction
	Deblocking filter

	Display controller

	Programmable System on Chip (PSoC) platform for H.264 decoder
	SoC platform details.

	Results and analysis
	Conclusions

	Conclusions

