Physics - Publications
Permanent URI for this collection
Browse
Browsing Physics - Publications by Author "Abi, B."
Results Per Page
Sort Options
-
ItemDeep underground neutrino experiment (DUNE) near detector conceptual design report( 2021-12-01) Abud, A. Abed ; Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Aduszkiewicz, A. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alrashed, M. ; Alt, C. ; Alton, A. ; Amedo, P. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Anfimov, N. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Ayala-Torres, M. ; Azfar, F. ; Back, A. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagaturia, I. ; Bagby, L. ; Balasubramanian, S. ; Baldi, P. ; Baller, B. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Basharina-Freshville, A. ; Bashyal, A. ; Basque, V. ; Belchior, E. ; Battat, J. B.R. ; Battisti, F. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Rodríguez, A. Betancur ; Bhattacharjee, M. ; Bhuller, S. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bomben, L. ; Bonesini, M. ; Bongrand, M.The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents.
-
ItemDeep underground neutrino experiment (DUNE) near detector conceptual design report( 2021-12-01) Abud, A. Abed ; Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Aduszkiewicz, A. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alrashed, M. ; Alt, C. ; Alton, A. ; Amedo, P. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Anfimov, N. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Ayala-Torres, M. ; Azfar, F. ; Back, A. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagaturia, I. ; Bagby, L. ; Balasubramanian, S. ; Baldi, P. ; Baller, B. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Basharina-Freshville, A. ; Bashyal, A. ; Basque, V. ; Belchior, E. ; Battat, J. B.R. ; Battisti, F. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Rodríguez, A. Betancur ; Bhattacharjee, M. ; Bhuller, S. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bomben, L. ; Bonesini, M. ; Bongrand, M.The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents.
-
ItemDesign, construction and operation of the ProtoDUNE-SP Liquid Argon TPC( 2022-01-01) Abud, A. Abed ; Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adames, M. R. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Aduszkiewicz, A. ; Aguilar, J. ; Ahmad, Z. ; Ahmed, J. ; Ali-Mohammadzadeh, B. ; Alion, T. ; Allison, K. ; Monsalve, S. Alonso ; Alrashed, M. ; Alt, C. ; Alton, A. ; Amedo, P. ; Anderson, J. ; Andreopoulos, C. ; Andreotti, M. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Anfimov, N. ; Ankowski, A. ; Antoniassi, M. ; Antonova, M. ; Antoshkin, A. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Asquith, L. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Ayala-Torres, M. ; Azfar, F. ; Back, A. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagaturia, I. ; Bagby, L. ; Balashov, N. ; Balasubramanian, S. ; Baldi, P. ; Baller, B. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, A. ; Barros, N. ; Barrow, J. L. ; Basharina-Freshville, A. ; Bashyal, A. ; Basque, V. ; Belchior, E. ; Battat, J. B.R. ; Battisti, F. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Montiel, C. Benitez ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Rodríguez, A. Betancur ; Bevan, A. ; Bezerra, T. J.C. ; Bhattacharjee, M. ; Bhuller, S. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M.The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
-
ItemDesign, construction and operation of the ProtoDUNE-SP Liquid Argon TPC( 2022-01-01) Abud, A. Abed ; Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adames, M. R. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Aduszkiewicz, A. ; Aguilar, J. ; Ahmad, Z. ; Ahmed, J. ; Ali-Mohammadzadeh, B. ; Alion, T. ; Allison, K. ; Monsalve, S. Alonso ; Alrashed, M. ; Alt, C. ; Alton, A. ; Amedo, P. ; Anderson, J. ; Andreopoulos, C. ; Andreotti, M. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Anfimov, N. ; Ankowski, A. ; Antoniassi, M. ; Antonova, M. ; Antoshkin, A. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Asquith, L. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Ayala-Torres, M. ; Azfar, F. ; Back, A. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagaturia, I. ; Bagby, L. ; Balashov, N. ; Balasubramanian, S. ; Baldi, P. ; Baller, B. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, A. ; Barros, N. ; Barrow, J. L. ; Basharina-Freshville, A. ; Bashyal, A. ; Basque, V. ; Belchior, E. ; Battat, J. B.R. ; Battisti, F. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Montiel, C. Benitez ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Rodríguez, A. Betancur ; Bevan, A. ; Bezerra, T. J.C. ; Bhattacharjee, M. ; Bhuller, S. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M.The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
-
ItemFirst results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform( 2020-12-01) Abi, B. ; Abud, A. Abed ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adamowski, M. ; Adams, D. ; Adrien, P. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Siffert, B. Blanco ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D.The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.
-
ItemFirst results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform( 2020-12-01) Abi, B. ; Abud, A. Abed ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adamowski, M. ; Adams, D. ; Adrien, P. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Siffert, B. Blanco ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D.The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.
-
ItemLong-baseline neutrino oscillation physics potential of the DUNE experiment: DUNE Collaboration( 2020-10-01) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Siffert, B. Blanco ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin 22 θ13 to current reactor experiments.
-
ItemLong-baseline neutrino oscillation physics potential of the DUNE experiment: DUNE Collaboration( 2020-10-01) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Siffert, B. Blanco ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin 22 θ13 to current reactor experiments.
-
ItemNeutrino interaction classification with a convolutional neural network in the DUNE far detector( 2020-11-09) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Alonso Monsalve, S. ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Barranco Monarca, J. ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Bazo Alba, J. L. ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Bento Neves, F. ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Blanco Siffert, B. ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.
-
ItemNeutrino interaction classification with a convolutional neural network in the DUNE far detector( 2020-11-09) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Alonso Monsalve, S. ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Barranco Monarca, J. ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Bazo Alba, J. L. ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Bento Neves, F. ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Blanco Siffert, B. ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.
-
ItemProspects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment: DUNE Collaboration( 2021-04-01) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Siffert, B. Blanco ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
-
ItemProspects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment: DUNE Collaboration( 2021-04-01) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Siffert, B. Blanco ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
-
ItemSearching for solar KDAR with DUNE( 2021-10-01) Abed Abud, A. ; Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adames, M. R. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Aduszkiewicz, A. ; Aguilar, J. ; Ahmad, Z. ; Ahmed, J. ; Ali-Mohammadzadeh, B. ; Alion, T. ; Allison, K. ; Alonso Monsalve, S. ; Alrashed, M. ; Alt, C. ; Alton, A. ; Amedo, P. ; Anderson, J. ; Andreopoulos, C. ; Andreotti, M. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Anfimov, N. ; Ankowski, A. ; Antoniassi, M. ; Antonova, M. ; Antoshkin, A. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Asquith, L. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Ayala-Torres, M. ; Azfar, F. ; Back, A. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagaturia, I. ; Bagby, L. ; Balashov, N. ; Balasubramanian, S. ; Baldi, P. ; Baller, B. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Barranco Monarca, J. ; Barros, A. ; Barros, N. ; Barrow, J. L. ; Basharina-Freshville, A. ; Bashyal, A. ; Basque, V. ; Belchior, E. ; Battat, J. B.R. ; Battisti, F. ; Bay, F. ; Bazo Alba, J. L. ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Benitez Montiel, C. ; Bento Neves, F. ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Betancur Rodríguez, A. ; Bevan, A. ; Bezerra, T. J.C. ; Bhatnagar, V. ; Bhattacharjee, M. ; Bhuller, S. ; Bhuyan, B. ; Biagi, S. ; Bian, J.The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions.
-
ItemSearching for solar KDAR with DUNE( 2021-10-01) Abed Abud, A. ; Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adames, M. R. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Aduszkiewicz, A. ; Aguilar, J. ; Ahmad, Z. ; Ahmed, J. ; Ali-Mohammadzadeh, B. ; Alion, T. ; Allison, K. ; Alonso Monsalve, S. ; Alrashed, M. ; Alt, C. ; Alton, A. ; Amedo, P. ; Anderson, J. ; Andreopoulos, C. ; Andreotti, M. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Anfimov, N. ; Ankowski, A. ; Antoniassi, M. ; Antonova, M. ; Antoshkin, A. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Asquith, L. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Ayala-Torres, M. ; Azfar, F. ; Back, A. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagaturia, I. ; Bagby, L. ; Balashov, N. ; Balasubramanian, S. ; Baldi, P. ; Baller, B. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Barranco Monarca, J. ; Barros, A. ; Barros, N. ; Barrow, J. L. ; Basharina-Freshville, A. ; Bashyal, A. ; Basque, V. ; Belchior, E. ; Battat, J. B.R. ; Battisti, F. ; Bay, F. ; Bazo Alba, J. L. ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Benitez Montiel, C. ; Bento Neves, F. ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Betancur Rodríguez, A. ; Bevan, A. ; Bezerra, T. J.C. ; Bhatnagar, V. ; Bhattacharjee, M. ; Bhuller, S. ; Bhuyan, B. ; Biagi, S. ; Bian, J.The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions.
-
ItemSupernova neutrino burst detection with the deep underground neutrino experiment: DUNE Collaboration( 2021-05-01) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Alonso Monsalve, S. ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Barranco Monarca, J. ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Bento Neves, F. ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Blanco Siffert, B. ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The deep underground neutrino experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE’s ability to constrain the νe spectral parameters of the neutrino burst will be considered.
-
ItemSupernova neutrino burst detection with the deep underground neutrino experiment: DUNE Collaboration( 2021-05-01) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Alonso Monsalve, S. ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. P. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. J. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Barranco Monarca, J. ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. L.Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Bento Neves, F. ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Blanco Siffert, B. ; Blaszczyk, F. D.M. ; Blazey, G. C. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. B. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The deep underground neutrino experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE’s ability to constrain the νe spectral parameters of the neutrino burst will be considered.
-
ItemVolume I. Introduction to DUNE( 2020-08-01) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Siffert, B. Blanco ; Blaszczyk, F. ; Blazey, G. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- A nd dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology.
-
ItemVolume I. Introduction to DUNE( 2020-08-01) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Siffert, B. Blanco ; Blaszczyk, F. ; Blazey, G. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- A nd dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology.
-
ItemVolume III. DUNE far detector technical coordination( 2020-08-01) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Siffert, B. Blanco ; Blaszczyk, F. ; Blazey, G. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- A nd dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.
-
ItemVolume III. DUNE far detector technical coordination( 2020-08-01) Abi, B. ; Acciarri, R. ; Acero, M. A. ; Adamov, G. ; Adams, D. ; Adinolfi, M. ; Ahmad, Z. ; Ahmed, J. ; Alion, T. ; Monsalve, S. Alonso ; Alt, C. ; Anderson, J. ; Andreopoulos, C. ; Andrews, M. ; Andrianala, F. ; Andringa, S. ; Ankowski, A. ; Antonova, M. ; Antusch, S. ; Aranda-Fernandez, A. ; Ariga, A. ; Arnold, L. O. ; Arroyave, M. A. ; Asaadi, J. ; Aurisano, A. ; Aushev, V. ; Autiero, D. ; Azfar, F. ; Back, H. ; Back, J. J. ; Backhouse, C. ; Baesso, P. ; Bagby, L. ; Bajou, R. ; Balasubramanian, S. ; Baldi, P. ; Bambah, B. ; Barao, F. ; Barenboim, G. ; Barker, G. ; Barkhouse, W. ; Barnes, C. ; Barr, G. ; Monarca, J. Barranco ; Barros, N. ; Barrow, J. L. ; Bashyal, A. ; Basque, V. ; Bay, F. ; Alba, J. Bazo ; Beacom, J. F. ; Bechetoille, E. ; Behera, B. ; Bellantoni, L. ; Bellettini, G. ; Bellini, V. ; Beltramello, O. ; Belver, D. ; Benekos, N. ; Neves, F. Bento ; Berger, J. ; Berkman, S. ; Bernardini, P. ; Berner, R. M. ; Berns, H. ; Bertolucci, S. ; Betancourt, M. ; Bezawada, Y. ; Bhattacharjee, M. ; Bhuyan, B. ; Biagi, S. ; Bian, J. ; Biassoni, M. ; Biery, K. ; Bilki, B. ; Bishai, M. ; Bitadze, A. ; Blake, A. ; Siffert, B. Blanco ; Blaszczyk, F. ; Blazey, G. ; Blucher, E. ; Boissevain, J. ; Bolognesi, S. ; Bolton, T. ; Bonesini, M. ; Bongrand, M. ; Bonini, F. ; Booth, A. ; Booth, C. ; Bordoni, S. ; Borkum, A. ; Boschi, T. ; Bostan, N. ; Bour, P. ; Boyd, S. ; Boyden, D. ; Bracinik, J. ; Braga, D. ; Brailsford, D.The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- A nd dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.