School of Computer and Information Sciences
Permanent URI for this community
Browse
Browsing School of Computer and Information Sciences by Subject "2D Affine transformation"
Results Per Page
Sort Options
-
ItemGeometric transformations parameters estimation from copy-move forgery using image blobs and keypoints( 2022-01-01) Patrick, Niyishaka ; Bhagvati, ChakravarthyA copy-move forgery is a passive tampering wherein one or more regions have been copied and pasted within the same image. Often, geometric transformations, including scale, rotation, and rotation+scale are applied to the forged areas to conceal the counterfeits to the copy-move forgery detection methods. Recently, copy-move forgery detection using image blobs have been used to tackle the limitation of the existing detection methods. However, the main limitation of blobs-based copy-move forgery detection methods is the inability to perform the geometric transformation estimation. To tackle the above-mentioned limitation, this article presents a technique that detects copy-move forgery and estimates the geometric transformation parameters between the authentic region and its duplicate using image blobs and scale-rotation invariant keypoints. The proposed algorithm involves the following steps: image blobs are found in the image being analyzed; scale-rotation invariant features are extracted; the keypoints that are located within the same blob are identified; feature matching is performed between keypoints that are located within different blobs to find similar features; finally, the blobs with matched keypoints are post-processed and a 2D affine transformations is computed to estimate the geometric transformation parameters. Our technique is flexible and can easily take in various scale-rotation invariant keypoints including AKAZE, ORB, BRISK, SURF, and SIFT to enhance the effectiveness. The proposed algorithm is implemented and evaluated on images forged with copy-move regions combined with geometric transformation from standard datasets. The experimental results indicate that the new algorithm is effective for geometric transformation parameters estimation.