Engineering Sciences and Technology - Publications
Permanent URI for this collection
Browse
Browsing Engineering Sciences and Technology - Publications by Subject "3D printing"
Results Per Page
Sort Options
-
Item3D printing of complex shaped alumina parts( 2018-11-01) Mamatha, Sirisala ; Biswas, Papiya ; Ramavath, Pandu ; Das, Dibakar ; Johnson, RoyAlpha-alumina powder was mixed with methyl cellulose as a binder with concentration as low as 0.25% by weight in an aquoes medium and kneaded in a high shear mixer to obtain a printable paste. The paste was subjected to rheological measurements and exhibited a shear rate exponent of 0.54 signifying the shear thinning behavior. The paste was used for printing parts with various shapes according to CAD model by employing a ram type 3D printer. Printed parts were dried and the green density was determined. Further, the parts were also subjected to X-ray radiography in order to evaluate the possible occurrence of printing defects. The samples were sintered under pressureless condition at 1650 °C in a muffle furnace and Hot Isostsically Pressed (HIP) at 1350 °C and a pressure of 1650 bar using a vacuum encapsulated SS CAN. Hot Isostatic pressing resulted in a higher density of 3.94 g/cc in comparison to 3.88 g/cc obtained under pressureless conditions and also shown superior mechanical properties. HIPing of 3D printed samples not only resulted in possible healing of printing defects as reavealed by X-ray radiography but also enhanced the diffusion at low temperature of 1350 °C leading to finer grain sizes as complemented by the microstructure.
-
Item3D printing of cordierite honeycomb structures and evaluation of compressive strength under quasi-static condition( 2020-01-01) Mamatha, Sirisala ; Biswas, Papiya ; Das, Dibakar ; Johnson, RoyCeramic honeycombs exhibit unique mechanical properties based on engineered formulations and geometry of cells. Extrusion of formable paste through a complex honeycomb die is the commonly practiced technique for the manufacturing of honeycombs globally. Extrusion die fabrication is a complex process which necessitates sophisticated infrastructure facilities that provide high geometrical accuracy and finish to produce defect free honeycombs. Furthermore, every configuration of honeycomb requires a specific tool. Additive manufacturing (AM)/ 3D printing is a rapid prototyping technique which offers flexibility in fabrication of honeycombs with desired geometries from a virtual model directly. Further, this does not require complicated dies. In this study, viscoplastic printable cordierite raw mix paste with a shear rate exponent of 0.87 was printed into honeycombs with hexagonal, square, and triangular cells using a ram type 3D printer. The printed honeycomb samples are found to possess good integrity and near net shape after drying. Sintered 3D-printed honeycomb samples of all configurations have exhibited cordierite as a major phase along with minor phases of magnesium aluminate (MgAl2O4) spinel, clinoenstatite (MgSiO3), and corundum (Al2O3) with sintered density of 2.41-2.48 g/cc. The samples are also subjected to compression testing under quasi-static condition. The study demonstrates 3D printing as a viable and flexible technique for rapid prototyping of honeycombs with desired configurations and engineered properties.
-
ItemEffect of parameters on 3D printing of alumina ceramics and evaluation of properties of sintered parts( 2021-01-01) Mamatha, Sirisala ; Biswas, Papiya ; Ramavath, Pandu ; Das, Dibakar ; Johnson, RoyPaste rheology and printing parameters contribute to a great extent to engineer the properties of ceramic parts produced through 3D printing process. Alumina paste, which showed shear thinning behavior, was prepared using optimum concentration of additives. Paste was 3D printed and effect of printing parameters such as printing speed, length to diameter (L/D) ratio of nozzle, self-standing distance of extrudate, filling pattern and filling angle have been studied. Additionally, effect of the substrate material on which the extrudate is printed was also elucidated. A printing speed of 5–6 mm/s, an L/D ratio of 25 mm and self-standing distance of 1.25 ± 0.25 mm are found to be optimum. Further, a filling pattern of rectilinear geometry along with filling angle of 90° is found to be desirable. Out of the substrates evaluated, polished metal surface is found to be relatively better to achieve close tolerances. The alumina samples printed under optimized conditions are found to possess integrity with respect to the structure and close to pre-designed dimensions. Sintered samples were found to be free of crack and exhibited a density of 3.88 g/cc (97.5% of theoretical density). Density and hardness (16.5 GPa) of printed part correlates well with the microstructure consisting of grains of average size of 9.68 μm.