Medical Sciences - Publications
Permanent URI for this collection
Browse
Browsing Medical Sciences - Publications by Subject "Acanthamoeba keratitis"
Results Per Page
Sort Options
-
ItemGranulomatous inflammation in Acanthamoeba keratitis: An immunohistochemical study of five cases and review of literature( 2005-10-01) Vemuganti, G. K. ; Pasricha, G. ; Sharma, S. ; Garg, P.Purpose: Acanthamoeba keratitis usually presents as a necrotizing stromal inflammation. We report a rare presentation of granulomatous inflammation in Acanthamoeba keratitis Methods: Retrospective clinico-pathologic case series. Results: Five corneal tissues (3 comeal buttons, 2-eviscerated contents) from patients suffering from severe Acanthamoeba keratitis not responding to anti-Acanthamoeba treatment, revealed a florid granulomotous inflammation with multinucleated giant cells in the posterior stroma and around Descemet's membrane. Phagocytosed parasites were noted within the giant cells. Vascularization of the corneal stroma was noted in two cases. Immunophenotyping revealed a predominance of T lymphocytes and macrophages. Clinically, four of five cases had shown features of limbal and scleral involvement. Conclusions: Granulomatous inflammation in the posterior comeal stroma, is not an uncommon finding in Acanthamoeba keratitis and could possibly be immune-mediated, contributing to persistence and progression of disease. Presence of granulomatous inflammation in Acanthamoeba keratitis, in most cases is associated with limbal and scleral involvement and therefore could be considered as one of the poor prognostic markers. Further studies are required to ascertain the specific clinical features and appropriate management strategies in these cases.
-
ItemKeratocyte loss in Acanthamoeba keratitis: Phagocytosis, necrosis or apoptosis ?( 2000-12-01) Vemuganti, Geeta K. ; Sharma, Savitri ; Athmanathan, Sreedharan ; Garg, PrashantPurpose: Pathogenesis of Acanthamoeba keratitis involves breakdown of epithelial barrier, stromal invasion by Acanthamoeba, loss of keratocytes, inflammatory response and finally stromal necrosis. The loss of keratocytes, believed to be due to the phagocytic activity of the parasite, occurs disproportionate to and independent of the parasite load, thereby suggesting additional modes of cell loss. To test our hypothesis that the loss of keratocytes in Acanthamoeba keratitis is due to apoptosis, we did both histology and histochemistry on the corneal tissues. Methods: Routine Haematoxylin and Eosin, Gomori's Methenamine Silver and Periodic acid Schiff stained sections of five corneal tissues from penetrating keratoplasty and eviscerated eyes were reviewed. TUNEL staining was done for morphological detection of apoptosis in three cases, using formalin-fixed, paraffin-processed tissues. Results: Histological changes were epithelial ulceration, loss of keratocytes in all layers, inflammation in anterior two-thirds of the stroma with necrosis, and deeper quiet stroma. Acanthamoeba trophozoites were found in the anterior stroma while the cysts were more in the deeper stroma, with minimal or no inflammatory response. TUNEI staining was positive in keratocytic nuclei in all layers. Conclusions: This study demonstrates that one of the modes of keratocyte loss in Acanthamoeba keratitis is by apoptosis, possibly in addition to the necrotic process and phagocytic activity of the parasite. The death of inflammatory cells also appears to be mediated by apoptosis.