A quantitative measure of medium-range order in amorphous materials from transmission electron micrographs

dc.contributor.author Dash, R. K.
dc.contributor.author Voyles, P. M.
dc.contributor.author Gibson, J. M.
dc.contributor.author Treacy, M. M.J.
dc.contributor.author Keblinski, P.
dc.date.accessioned 2022-03-27T04:04:28Z
dc.date.available 2022-03-27T04:04:28Z
dc.date.issued 2003-08-13
dc.description.abstract We propose an extension to the technique of fluctuation electron microscopy that quantitatively measures a medium-range order correlation length in amorphous materials. In both simulated images from computer-generated paracrystalline amorphous silicon models and experimental images of amorphous silicon, we find that the spatial autocorrelation function of dark-field transmission electron micrographs of amorphous materials exhibits a simple exponential decay. The decay length measures a nanometre-scale structural correlation length in the sample, although it also depends on the microscope resolution. We also propose a new interpretation of the fluctuation microscopy image variance in terms of fluctuations in local atomic pair distribution functions.
dc.identifier.citation Journal of Physics Condensed Matter. v.15(31)
dc.identifier.issn 09538984
dc.identifier.uri 10.1088/0953-8984/15/31/317
dc.identifier.uri https://iopscience.iop.org/article/10.1088/0953-8984/15/31/317
dc.identifier.uri https://dspace.uohyd.ac.in/handle/1/6228
dc.title A quantitative measure of medium-range order in amorphous materials from transmission electron micrographs
dc.type Journal. Conference Paper
dspace.entity.type
Files
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: