New exponent in self-avoiding walks

dc.contributor.author srivastava, Vipin
dc.date.accessioned 2022-03-26T23:44:13Z
dc.date.available 2022-03-26T23:44:13Z
dc.date.issued 1984-06-01
dc.description.abstract A new exponent is reported in the problem of non-intersecting self-avoiding random walks. It is connected with the asymptotic behaviour of the growth of number of such walks. The value of the exponent is found to be nearly 0.90 for all two dimensional and nearly 0.96 for all three dimensional, lattices studied here. It approaches the value 1.0 assymptotically as the dimensionality approaches infinity. © 1984 Springer-Verlag.
dc.identifier.citation Zeitschrift für Physik B Condensed Matter. v.56(2)
dc.identifier.issn 07223277
dc.identifier.uri 10.1007/BF01469697
dc.identifier.uri http://link.springer.com/10.1007/BF01469697
dc.identifier.uri https://dspace.uohyd.ac.in/handle/1/2370
dc.title New exponent in self-avoiding walks
dc.type Journal. Article
dspace.entity.type
Files
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: