A Combined System Metrics Approach to Cloud Service Reliability Using Artificial Intelligence

No Thumbnail Available
Date
2022-03-01
Authors
Chhetri, Tek Raj
Dehury, Chinmaya Kumar
Lind, Artjom
Srirama, Satish Narayana
Fensel, Anna
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Identifying and anticipating potential failures in the cloud is an effective method for increasing cloud reliability and proactive failure management. Many studies have been conducted to predict potential failure, but none have combined SMART (self-monitoring, analysis, and reporting technology) hard drive metrics with other system metrics, such as central processing unit (CPU) utilisation. Therefore, we propose a combined system metrics approach for failure prediction based on artificial intelligence to improve reliability. We tested over 100 cloud servers’ data and four artificial intelligence algorithms: random forest, gradient boosting, long short-term memory, and gated recurrent unit, and also performed correlation analysis. Our correlation analysis sheds light on the relationships that exist between system metrics and failure, and the experimental results demonstrate the advantages of combining system metrics, outperforming the state-of-the-art.
Description
Keywords
Artificial intelligence, Cloud computing, Failure prediction, Fault tolerance, Reliability
Citation
Big Data and Cognitive Computing. v.6(1)